

TABLE OF CONTENTS

LOCATION OF PROJECT	2
DESCRIPTION OF PROJECT	2
MAINTENANCE OF ROADWAYS	2
PUBLIC CONVENIENCE AND SAFETY (D-1).....	2
KEEPING ARTERIAL ROADWAYS OPEN TO TRAFFIC (LANE CLOSURES ONLY).....	3
STATUS OF UTILITIES (D-1).....	4
TRAFFIC CONTROL PLAN	9
CLEARING AND GRUBBING	10
SAW CUTS.....	11
COARSE AGGREGATE FOR BACKFILL, TRENCH BACKFILL AND BEDDING (D-1)	11
CONSTRUCTION LAYOUT.....	11
EXPLORATION TRENCH, SPECIAL.....	12
SHREDDED BARK MULCH, 4"	13
PLANT INSTALLATION	13
VEGETATION MANAGEMENT, ECOLOGICAL MONITORING AND REPORTING	16
AVAILABLE REPORTS	19

ATTACHMENT 1 – LPC-662 AND SOIL INVESTIGATION REPORT

ATTACHMENT 2 – SOIL BORINGS

SPECIAL PROVISIONS

The following Special Provisions supplement the "Standard Specifications for Road and Bridge Construction", adopted January 1, 2022, the latest edition of the "Manual on Uniform Traffic Control Devices for Streets and Highways", the "Manual of Test Procedures for Materials" in effect on the date of invitation for bids, and the "Supplemental Specifications and Recurring Special Provisions" adopted January 1, 2023 included herein which apply to and govern the Roosevelt Road (IL Route 38) sidewalk improvements. In case of conflict with any part or parts of said Specifications, the said Special Provisions shall take precedence and shall govern.

LOCATION OF PROJECT

The project is located along the south parkway of Roosevelt Road (IL Route 38) approximately 1400 feet from County Farm Road. It is located within the City of Wheaton in DuPage County, Illinois.

DESCRIPTION OF PROJECT

The work consists of sidewalk removal, PCC sidewalk, installation of a pedestrian bridge and foundation, landscape restoration, erosion control, and all incidental and collateral work necessary to complete the improvements as shown in the plans and described herein.

MAINTENANCE OF ROADWAYS

Effective: September 30, 1985

Revised: November 1, 1996

Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer.

If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications.

PUBLIC CONVENIENCE AND SAFETY (D-1)

Effective: May 1, 2012

Revised: July 15, 2012

Add the following to the end of the fourth paragraph of Article 107.09:

“If the holiday is on a Saturday or Sunday, and is legally observed on a Friday or Monday, the length of Holiday Period for Monday or Friday shall apply.”

Add the following sentence after the Holiday Period table in the fourth paragraph of Article 107.09:

“The Length of Holiday Period for Thanksgiving shall be from 5:00 AM the Wednesday prior to 11:59 PM the Sunday After”

Delete the fifth paragraph of Article 107.09 of the Standard Specifications:

“On weekends, excluding holidays, roadways with Average Daily Traffic of 25,000 or greater, all lanes shall be open to traffic from 3:00 P.M. Friday to midnight Sunday except where structure construction or major rehabilitation makes it impractical.”

KEEPING ARTERIAL ROADWAYS OPEN TO TRAFFIC (LANE CLOSURES ONLY)

Effective: January 22, 2003

Revised: August 10, 2017

The Contractor shall provide the necessary traffic control devices to warn the public and to delineate the work zone as required in these Special Provisions, the Standard Specifications, the State Standards, and the District Details.

Arterial lane closures shall be in accordance with the Standard Specifications, Highway Standards, District Details, and the direction of the Engineer. The Contractor shall request and gain approval from the Engineer seventy-two (72) hours in advance of all long-term (24 hrs. or longer) lane closures.

Arterial lane closures not shown in the staging plans will not be permitted during peak traffic volume hours.

Peak traffic volume hours are defined as weekdays (Monday through Friday) from 6:00 AM to 8:30 AM and 4:30 PM to 6:00 PM.

Private vehicles shall not be parked in the work zone. Contractor's equipment and/or vehicles shall not be parked on the shoulders or in the median during non-working hours. The parking of equipment and/or vehicles on State right-of-way will only be permitted at locations approved by the Engineer in accordance with Articles 701.08 and 701.11 of the Standard Specifications.

Should the Contractor fail to completely open and keep open all the traffic lanes to traffic in accordance with the limitations specified above, the Contractor shall be liable to the Department for the amount of:

One lane or ramp blocked = \$1,000.00

Two lanes blocked = \$2,500.00

Not as a penalty but as liquidated and ascertained damages for each and every 15 minute interval or a portion thereof that a lane is blocked outside the allowable time limitations. Such damages may be deducted by the Department from any monies due the Contractor. These damages shall apply during the contract time and during any extensions of the contract time.

STATUS OF UTILITIES (D-1)

Effective: June 1, 2016

Revised: January 1, 2020

Utility companies and/or municipal owners located within the construction limits of this project have provided the following information regarding their facilities and the proposed improvements. The tables below contain a description of specific conflicts to be resolved and/or facilities which will require some action on the part of the Department's contractor to proceed with work. Each table entry includes an identification of the action necessary and, if applicable, the estimated duration required for the resolution.

UTILITIES TO BE ADJUSTED

Conflicts noted below have been identified by following the suggested staging plan included in the contract. The company has been notified of all conflicts and will be required to obtain the necessary permits to complete their work; in some instances, resolution will be a function of the construction staging. The responsible agency must relocate, or complete new installations as noted below; this work has been deemed necessary to be complete for the Department's contractor to then work in the stage under which the item has been listed.

Construction Stage

STAGE / LOCATION	TYPE	DESCRIPTION	RESPONSIBLE AGENCY	DURATION OF TIME
-	-	-	-	-

Construction Stage: xx Days Total Installation

The following contact information is what was used during the preparation of the plans as provided by the Agency/Company responsible for resolution of the conflict.

Agency/Company Responsible to Resolve Conflict	Name of contact	Phone	E-mail address
-	-	-	-

UTILITIES TO BE WATCHED AND PROTECTED

The areas of concern noted below have been identified by following the suggested staging plan included for the contract. The information provided is not a comprehensive list of all remaining utilities, but those which during coordination were identified as ones which might require the Department's contractor to take into consideration when making the determination of the means and methods that would be required to construct the proposed improvement. In some instances, the contractor will be responsible to notify the owner in advance of the work to take place so necessary staffing on the owner's part can be secured.

Construction Stage

STAGE / LOCATION	TYPE	DESCRIPTION	OWNER
Project Limits	Telephone	Existing AT&T equipment and cables are located under and/or adjacent to proposed sidewalks. Contractor to watch and protect, utilize caution when excavating around these areas.	AT&T
Project Limits	Gas	Existing gas lines are present within the station limits of this project and underneath existing and/or proposed sidewalk. Contractor to watch and protect, utilize caution when excavating around these areas.	Nicor Gas
Project Limits	Fiber Optic	Existing fiber optic cable and handholes are located under and/or adjacent to proposed sidewalks. Contractor to watch and protect, utilize caution when excavating around these areas.	MCI / Verizon
Project Limits	Buried cables	Existing buried cable are located under and/or adjacent to proposed sidewalks. Contractor to watch and protect, utilize caution when excavating around these areas.	Lumen

The following contact information is what was used during the preparation of the plans as provided by the owner of the facility.

Agency/Company Responsible to Resolve Conflict	Name of contact	Phone	E-mail address
AT&T	Tom Laskowski	630-573-5643	tl7895@att.com

			g05256@att.com
MCI / Verizon	Joe B. Chaney Jr	312-617-2131	Joe.Chaney@Verizon.com
Nicor Gas	Bruce Koppang	(630) 388-3046	gasmaps@nicor.com
Lumen	Haley Woods		haley.woods@lumen.com

The above represents the best information available to the Department and is included for the convenience of the bidder. The days required for conflict resolution should be considered in the bid as this information has also been factored into the timeline identified for the project when setting the completion date. The applicable portions of the Standard Specifications for Road and Bridge Construction shall apply.

Estimated duration of time provided above for the first conflicts identified will begin on the date of the executed contract regardless of the status of the utility relocations. The responsible agencies will be working toward resolving subsequent conflicts in conjunction with contractor activities in the number of days noted.

The estimated relocation duration must be part of the progress schedule submitted by the contractor. A utility kickoff meeting will be scheduled between the Department, the Department's contractor and the utility companies when necessary. The Department's contractor is responsible for contacting J.U.L.I.E. prior to all excavation work.

PEDESTRIAN TRUSS SUPERSTRUCTURE

Effective: January 13, 1998

Revised: October 27, 2023

Description: This work shall consist of the design, fabrication, storage, delivery and erection of a welded steel, pedestrian truss superstructure. Also included in this work shall be the furnishing and installation of a deck, all bearings, anchors and/or retainers, railings, fencing and miscellaneous items as indicated on the plans.

Materials:

Truss. Structural steel shall conform to the requirements of Section 1006 of the Standard Specifications, ASTM A847 for cold formed welded square and rectangular tubing, AASHTO M270 Grade 50W (M270M 345W) for atmospheric corrosion resistant structural steel, as applicable, unless otherwise shown on the plans or approved by the Engineer. All structural steel field connections shall be bolted with high strength bolts. High strength bolts for unpainted weathering steel shall conform to ASTM F 3125 Grade A 325 (F 3125M Grade A 325M) (Type 3). For painted structures, the high strength bolts shall be mechanically galvanized according to the requirements of Article 1006.08(a) of the Standard Specifications.

Deck. The deck type shall be as specified on the plans. The materials shall comply with the applicable portions of the materials section of the Standard Specifications.

When specified for use, the concrete deck and stay-in-place forms shall be non-composite. Metal Forms shall have a minimum thickness of 0.0359 in. (912 microns) or 20 Gage and shall be galvanized per ASTM A653 (A653M) with a G90 (Z275) min. coating designation.

Railing. The railing shall consist of a smooth rub rail, a toe plate and misc. elements, all located on the inside face of the truss.

Bearings. The bearing shall be designed and furnished as detailed in the plans, in the absence of details, the bearings details shall be as specified by the bridge manufacturer.

When specified for use, elastomeric bearings shall be according to Article 1083 of the Standard Specifications. Teflon surfaces shall be per Article 1083.02(b) of the Standard Specification and shall be bonded to the bearing plate.

Suppliers. The Department maintains a pre-qualified list of proprietary structural systems allowed for pedestrian truss superstructures. This list can be found on the Departments web site under Prequalified Structural Systems. The Contractor's options are limited to those systems pre-qualified by the Department on the date that the project is bid. These systems have been reviewed for structural feasibility and adequacy only. Presence on this list shall in no case relieve the Contractor of the site-specific design or QC/QA requirements stated herein.

The manufacturer shall provide evidence of current certification by AISC according to Article 106.08(b) of the Standard Specifications.

Design: The superstructure shall conform to the clear span, clear width, and railing configuration shown on the contract plans. The design shall be according to the LRFD Guide Specifications for the Design of Pedestrian Bridges. The design loads shall be as specified by the Guide Specification except as follows:

Design Wind Loads (Pz) for Pedestrian Trusses in Illinois		
Application	psf (kPa)	Applied to:
Circular Members	35 (1.68)	Projected vertical area of member
Flat Members	55 (2.63)	Projected vertical area of member
Signs	35 (1.68)	Projected vertical area of sign
Chain Link Fencing	10 (0.48)	Full projected area of fencing as if solid

The railings shall be designed per the appropriate Bridge Design Specifications for bicycle railings as shown on the plans. Smooth rub rails shall be attached to the bicycle railing and

located at a bicycle handlebar height of 3.5 ft. (1.1 m) above the top of the deck.

Prior to beginning construction or fabrication, the Contractor shall submit design calculations and six sets of shop drawings for each pedestrian bridge to the Engineer for review and approval. In addition, for bridges with any span over 150 ft. (46 m), or over a State or Federal Route, or within the States Right-of-Way, a copy of the shop drawings will be reviewed and approved for structural adequacy, by the Bureau of Bridges and Structures prior to final approval of shop drawings. The shop drawings shall include all support reactions for each load type. The following certification shall be placed on the first sheet of the bridge shop plans adjacent to the seal and signature of the Structural Engineer:

"I certify that to the best of my knowledge, information and belief, this bridge design is structurally adequate for the design loading shown on the plans and complies with the requirements of the Contract and the current 'Guide Specifications for Design of Pedestrian Bridges'."

The substructure is designed per the appropriate Bridge Design Specifications and based on the assumed truss loads, as shown on the plans. If the manufacturer's design exceeds those loads and/or the substructure needs to be adjusted to accommodate the truss superstructure chosen, then the Contractor shall submit the redesign to the Engineer for approval prior to ordering any material or starting construction. All design calculations, shop drawings and redesigned substructure drawings shall be sealed by a Structural Engineer licensed in the State of Illinois.

Construction: Truss erection procedures shall be according to the manufacturer's instructions. The deck shall be placed according to the applicable Sections of the Standard Specifications.

When weathering steel is used, all structural steel shall be prepared according to Article 506.07, except as follows. All visible surfaces shall be cleaned to a minimum SSPC-SP7 Brush Off Blast Cleaning. Visible surfaces include any surface that is visible from the deck or outside of the structure. When weathering steel is used, no additional painting is required at the ends of the truss.

When painting is specified, all structural steel shall be cleaned and painted according to Section 506. The paint system shall be the Organic Zinc-Rich/Epoxy/Urethane System according to Article 506.08(b). The color of the finish coat shall be as specified in the plans.

The shop qualifications found in Article 506.06(a) of AISC Sophisticated Paint Endorsement or SSPC QP-3 qualifications need not be required for shop painting of pedestrian truss superstructures.

Method of Measurement: The pedestrian truss superstructure will be measured in square

feet (square meters) of completed and accepted structure measured horizontally from back-to-back of abutments and within the clear path width as defined on the plans.

Basis of Payment: The pedestrian superstructure will be paid for at the contract unit price per square foot (square meter) for PEDESTRIAN TRUSS SUPERSTRUCTURE.

Traffic Control Plan

This work shall be done in accordance with the applicable portions of Section 701 of the Standard Specifications, the Supplement Specifications, the Illinois Manual on Uniform Traffic Control Devices for Streets and Highways, any details, notes, and Highway Standards contained in the Plans, and Special Provisions and the Special Provisions contained herein.

Special attention is called to Article 107.09 of the Standard Specifications and the following Highway Standards, Details, Recurring Local Roads and Streets Special Provisions and Special Provisions contained herein, relating to traffic control.

HIGHWAY STANDARDS

701106-02, Off Road Operations, Multilane, More Than 15' (4.5m) Away

701602-10, Urban Lane Closure Multilane, 2W, with Bidirectional Left Turn Lane

701801-06, Sidewalk, Corner, or Crosswalk Closure

701901-08, Traffic Control Devices

DETAILS

Typical Application of Traffic Control Devices for Minor Street Closed to Thru Traffic

SPECIAL PROVISIONS (Included in these Special Provisions)

Public Convenience and Safety

Traffic Control Plan

Maintenance of Roadways

The Contractor shall contact the Village at least 72 hours in advance of beginning work. Construction operations shall be conducted in a manner such that streets will be open to emergency traffic and accessible as required to local traffic. Advanced notice shall be provided to residents, police, fire, school districts and trash haulers when access to any street will be temporarily closed or limited. Removal and replacement of curb and gutter and driveways shall be planned so as to cause a minimum of inconvenience to the abutting

property owners. The work shall be accomplished such that the streets will be left open to local traffic at the end of each working day.

Unless otherwise indicated in Section 701, the above standards, details and special provisions shall be considered included in the contract.

CLEARING AND GRUBBING

DESCRIPTION: This work shall consist of clearing and grubbing from work areas within the limits shown on the plans or as required by the Engineer.

Clearing and grubbing shall consist of the removal and disposal of all obstructions such previously abandoned utilities and accumulations of rubbish of whatever nature and existing structures, the cutting and removal of all trees, saplings and stumps less than six (6) inches in diameter, logs, matted roots, shrubs, bushes, hedges, debris, or foreign matter that inhibits the completion of work shown in the plans.

CONSTRUCTION REQUIREMENTS: The areas to be cleared or cleared and grubbed shall be done in a manner determined by the Contractor and approved by the Engineer. Plant material outside the area to be cleared or cleared and grubbed shall be protected in accordance with Article 201.05 of the Standard Specifications. All materials shall be disposed of in accordance with Article 202.03 of the Standard Specifications. All holes, openings, or disturbed areas shall be filled with acceptable material to the existing ground elevation and compacted.

Method of Measurement: Clearing and Grubbing will be measured for payment in place in square yards. Plan quantities are estimates only. Actual quantities will be measured in place. Agreement to plan quantities will not be allowed.

BASIS OF PAYMENT: This work will be paid for at the contract unit price per square yard for CLEARING AND GRUBBING. This price shall include all materials, labor and equipment necessary to perform the work specified herein.

CHAIN LINK FENCE TO BE REMOVAL AND RE-ERECTED

Description: This work shall consist of removing and reinstalling existing chain link fence as shown on the plans. The work shall be performed in accordance with Section 606 of the Standard Specifications.

Any damage to the existing fence panel, posts, and/or other appurtenances necessary to reinstall the fence in-kind shall be repaired and/or replaced by the Contractor at their own expense, to the satisfactory of the Engineer.

Method of Measurement: Fence Removal and Reinstallation shall be measured by lineal feet.

Basis of Payment: This work will be paid at the contract unit price per FOOT for CHAIN LINK FENCE TO BE REMOVAL AND RE-ERECTED. The price shall include all materials and labor required to perform the work described herein

SAW CUTS

All saw cuts performed during the construction process will not be paid for separately but shall be included in the cost of the removal item adjacent to the saw cut.

COARSE AGGREGATE FOR BACKFILL, TRENCH BACKFILL AND BEDDING (D-1)

Effective: November 1, 2011

Revised: November 1, 2013

This work shall be according to Section 1004.05 of the Standard Specifications except for the following:

Reclaimed Asphalt Pavement (RAP) maybe blended with gravel, crushed gravel, crushed stone crushed concrete, crushed slag, chats, crushed sand stone or wet bottom boiler slag. The RAP used shall be according to the current Bureau of Materials and Physical Research Policy Memorandum, "Reclaimed Asphalt Pavement (RAP) for Aggregate Applications". The RAP shall be uniformly graded and shall pass the 1.0 in. (25 mm) screen. When RAP is blended with any of the coarse aggregate listed above, the blending shall be done mechanically with calibrated feeders. The feeders shall have an accuracy of + 2.0 percent of the actual quantity of material delivered. The final blended product shall not contain more than 40 percent by weight RAP.

The coarse aggregate listed above shall meet CA 6 and CA 10 gradations prior to being blended with the processed and uniformly graded RAP. Gradation deleterious count shall not exceed 10% of total RAP and 5% of other by total weight.

CONSTRUCTION LAYOUT

Description: The Contractor shall furnish and place construction layout stakes for this project. Reference points to the centerline of survey and bench marks as shown in the plans. Any additional control points set by the Engineer will be identified in the field to the Contractor and all field notes will be kept in the office of the Engineer.

The Contractor shall provide field forces, equipment, and material to set all additional stakes for this project, which are needed to establish offset stakes, reference points, and any other horizontal or vertical controls, including supplementary bench marks, necessary to secure a correct layout of the work. Stakes for line and grade of pavement and/or curb shall be set at sufficient station intervals (not to exceed 50 feet to assure substantial conformance to plan line and grade.

The Contractor shall be responsible for having the finished work conform to the lines, grades, elevations, and dimensions called for in the plans. Any inspection or checking of the Contractor's layout by the Engineer and the acceptance of all or any part of it shall not relieve

the Contractor of responsibility to secure the proper dimensions, grades and elevations of the several parts of the work. The Contractor shall exercise care in the preservation of stakes and bench marks and shall have them reset when any are damaged, lost, displaced, removed, or otherwise obliterated.

Responsibility of the Engineer

The Engineer will make random checks of the Contractor's staking to determine if the work is in conformance with the plans. Where the Contractor's work will tie into work that is being or will be done by others, checks will be made to determine if the work is in conformance with the proposed overall grade and horizontal alignment.

It is not the responsibility of the Engineer, except as provided herein, to check the correctness of the Contractor's stakes; any errors apparent will be immediately called to the Contractor's attention and the Contractor shall make the necessary correction before the stakes are used for construction purposes.

Responsibility of the Contractor

The Contractor shall establish from the given survey points and bench marks all the control points necessary to construct the individual project elements. The Contractor shall provide the Engineer adequate control in close proximity to each individual element to allow adequate checking of construction operations. This includes, but is not limited to, line and grades in substantially completed construction work. It is the Contractor's responsibility to tie in centerline control points in order to preserve them during construction operations.

All work shall be according to normally accepted self-checking surveying practices. Field notes shall be kept in standard survey field notebooks and those books shall become the property of the Engineer at the completion of the project. All notes shall be neat, orderly and in accepted form.

Method of Measurement and Payment: This work will be paid for at the contract lump sum price for CONSTRUCTION LAYOUT.

EXPLORATION TRENCH, SPECIAL

Description: This item shall consist of excavating an area for the purpose of locating existing utilities within the construction limits of the proposed improvement. This work shall be performed as directed by the Engineer

The depth of the trench shall be variable, but shall be deep enough to locate all potential conflicts. The width of the trench shall be sufficient to allow proper investigation of the entire trench. The exploration trench shall be constructed at the locations as determined by the Engineer.

After the trench has been inspected by the Engineer, the excavated material shall be used to backfill the trench in a manner satisfactory to the Engineer. Any excess materials shall be disposed of according to Article 202.03 of the Standard Specifications.

Method of Measurement: The exploration trench will be measured for payment in feet of trench constructed.

Basis of Payment: This work will be paid for at the contract unit price per foot (meter) for EXPLORATION TRENCH, SPECIAL.

SHREDDED BARK MULCH, 4"

Description. The work shall consist of installing hardwood mulch around new curbs, sidewalk and disturbed area due to the construction.

Material: The mulch shall consist of finely shredded (double shredded) hardwood bark mulch, or equivalent, and shall be well mixed and homogenous, uniform in color and free of foreign material and viable plant seed. No utility mulch or processed tree trimmings will be allowed.

Basis of Payment. This work shall be paid for as a contract unit price per square yard SHREDDED BARK MULCH, 4" which price will include labor, equipment, materials and incidental work necessary to complete the installation as specified.

PLANT INSTALLATION

Description. Work under this item shall be performed according to Section 253 and Section 254 of the IDOT Standard Specifications for Road and Bridge Construction, except as herein modified.

This work shall consist of the purchase, transportation, storage, delivery, preparation, and installation of balled and burlapped trees, balled and burlapped shrubs, container shrubs, perennials, grasses, groundcovers, vines, and bulbs (plant material). All labor, materials, tools, and equipment required to perform the work above is included in the unit cost. This item shall also include all excavation and preparation of planting area prior to planting, pulverized topsoil, wrapping, mulching, watering, plant care, and period of plant establishment for all balled and burlapped shrubs, container shrubs, perennials, grasses, ground covers, vines, and bulbs.

References.

- A. ANSI Z60.1-2004 -- American Standard for Nursery Stock; 2004 (or latest edition)
- B. Section 253 of IDOT Standard Specifications for Road and Bridge Construction
- C. Section 254 of IDOT Standard Specifications for Road and Bridge Construction

Submittals.

- A. Soil Laboratory Test
- B. Soil sample - provide in 1 quart sealed plastic container.

- C. Shredded hardwood bark mulch sample - provide in 1 quart sealed plastic container.
- D. Request for inspection of Materials sheets (Soil, Mulch)
- D. Request for Inspection of Plant Material sheets
- E. Tree wrap – sample

F. Permits - The Contractor is responsible for obtaining all necessary permits and licenses required by law and pay all fees associated therewith.

Permits apply to any arterial streets which require the opening of the parkway, traffic control and protection for any type of barricades or signs to be utilized for public notice for work under this contract must be obtained from the City of Wheaton.

Samples and resources of all materials shall be submitted to the Engineer for approval.

Materials. Materials shall be according to the following Articles of Division 1000 - Materials of the Standard Specifications.

Deciduous Shade Trees. Street tree plantings shall be free of branches equivalent to $\frac{1}{2}$ of the tree height or so that the crown of tree is in proportion to trunk as the tree grows.

Trees with ascending branches may be branched 1 foot or more below a starting branch height at 6' minimum.

Provide trees of specimen quality in accordance with American Association of Nurseryman, Inc., (AAN) Code of Standards ANSI Z60.1.

Plant Material Inspections. Plant material shall comply with American Standard for Nursery Stock ANZI Z60.1- 2004 (or latest edition), which by reference is made part of these specifications.

An inspection at the job site will be made prior to installation of plant material. Any plant material not meeting specification must be moved off the site and replaced at no additional cost.

Period of Plant Establishment. From the date of initial acceptance pursuant to final acceptance, the Contractor shall provide a period of establishment in accordance with Section 253 and 254 of the Standard Specifications for Road and Bridge Construction, EXCEPT THAT THE PERIOD OF ESTABLISHMENT MUST BE ONE COMPLETE GROWING SEASON FOR ALL PLANT MATERIAL. Growing Season is defined as such that any plant material installed in the spring planting season will be inspected for final acceptance at the end of the following year's spring planting season. Any plant material installed in the fall planting season will be inspected for final acceptance at the end of the following year's fall planting season. Final acceptance of all work will be made within thirty (30) days following the end of all planting seasons.

All plant material shall be in a healthy and thriving condition representative of its species, as determined by the Engineer, for the duration of the period of establishment. Plant material found not to be healthy as stated above due to, but not limited to: improper handling or planting; improper after care including trimming, watering, weeding, cultivating, insect infestations, or from shock of transplanting shall be removed by the contractor and replaced at no cost.

The Contractor shall replace said plant material at no cost within the time allotted by the Engineer. The replacement plant material shall be inspected by a City authorized representative following the same process as in the 'Plant Material Inspection' section above.

Guarantee: Contractor shall guarantee for period of one year from the date of Preliminary Acceptance / Substantial Completion, replacement of plants which have died, or are in distressed/dying condition, or which have failed to flourish in such manner that their usefulness or appearance has been impaired. Replace any tree with dead main leader or crown that is 25% or more dead.

Exclusions: Contractor shall not be liable for replacement cost of plants damaged by deicing compounds, fertilizers, pesticides or other materials not specified in Contract Documents or not applied by the landscaper, by relocating or removal by others, by acts of God, or by vandalism, and losses due to curtailment of water by local authorities.

Inspection of Maintenance: During guarantee period, Contractor shall, from time to time, inspect watering, cultivation, and other maintenance operations carried on by Owner with respect to such work, and promptly report to Owner any methods, practices or operations considered unsatisfactory and not in accord with interests or good horticultural practices.

Failure of Contractor to so inspect or report shall be construed as an acceptance of Owner's maintenance operations, and Contractor shall not thereafter claim or assert that any defects which may later develop are result of such methods or practices or operations.

Replacements: Plants which die or require replacement for other reasons during one-year guarantee period shall be replaced as soon as possible during following acceptable planting seasons:

1. Spring Replacement Season: All plants - when ground becomes workable to June 15.
2. Fall Replacement Season:
 - a) Deciduous plants - September 1 to November 15.
 - b) Evergreen plants - September 1 to November 1.

Procedure: Dispose of plants off-site in legal manner. Replacements shall be of same size and species as original plant unless otherwise approved by Engineer. Replacements shall be supplied and installed in accordance with specifications.

Additional one-year guarantee for replacement plants shall begin on date of final acceptance of plant material by Engineer as documented in field report.

Replacement and Damages: Decisions of Engineer for required replacements shall be conclusive and binding upon Contractor. Contractor shall be responsible for repairing damage to property also caused by defective workmanship and materials

Method of Measurement. Plant installation will be measured for payment in place per each or unit. Only acceptable plants will be measured for payment. All materials required to provide and establish healthy, thriving plant material shall be considered included in the

cost to this line item.

Basis of Payment. This work will be paid for at the contract unit price per EACH for EVERGREEN, TSUGA CANADENSIS (CANADIAN HEMLOCK), 6' HEIGHT, BALLED, BURLAPPED, SHRUB, PHYSOCARPUS OPULIFOLIUS (COMMON NINEBARK), CONTAINER GROWN, 5-GALLON TREE, QUERCUS BICOLOR (SWAMP WHITE OAK), 2 ½" CALIPER, BALLED AND BURLAPPED, SHRUB, CORNUS SERICEA ISANTI (ISANTI REDTWIG DOGWOOD), 3' HEIGHT, BALLED AND BURLAPPED. The cost of these items shall include the purchase, transportation, storage, delivery, preparation, and installation of the plant material of the type and size specified, and labor, materials, tools, and equipment necessary to complete the work. Also included in these line items is initial plant care and the period of plant establishment as described with in.

VEGETATION MANAGEMENT, ECOLOGICAL MONITORING AND REPORTING

This item shall include the three year management, monitoring and reporting of the native seedlings along side Winfield Creek. This work shall be performed as specified herein and to meet the Performance Standards shown on the plans.

Staff performing this vegetation management, and ecological monitoring and reporting work must meet the minimum qualifications provided below. A combination of staff may be used on the project, as appropriate, to meet the minimum qualifications. Bidders must provide documentation of staff experience, including resumes with education, relevant project examples and experience. It is intended that these qualified individuals will serve as the main contact between CONTRACTOR and ENGINEER.

QUALIFICATIONS

- PROJECT MANAGER/ECOLOGIST- must have a least 5 years of experience with natural areas restoration planning and implementation. This person shall be the main contact for work order communications with County staff. An ecologist has typically earned a Bachelor's Degree in Biology, Ecology, Natural Resources, or closely related field. The project manager is knowledgeable of relevant Federal, State, local laws, ordinances, codes, and regulations.
- HERBICIDE APPLICATOR- must have current and valid State of Illinois Pesticide Applicator License and will provide direction and oversight to on-site operators.
- HERBICIDE OPERATOR(S)- must have current and valid State of Illinois Pesticide Operator License.

VEGETATION MANAGEMENT

The duration of the vegetation management program is three years, beginning with the completion of grading and planting. Vegetation Management shall be conducted in accordance with the following requirements for the duration of the three-year management period. Vegetation Management shall include MOWING and HERBICIDE APPLICATION. The invasive species that require control include, but are not limited to, the following species provided in Table 1. The CONTRACTOR will create and implement an adaptive vegetation management plan to meet performance standards.

Table 1: Non-Native and Invasive Species

American Silver-Berry (<i>Elaeagnus commutata</i>)	Japanese Honeysuckle (<i>Lonicera japonica</i>)
Asian Bittersweet (<i>Celastrus orbiculatus</i>)	Japanese Hop (<i>Humulus japonica</i>)
Garden Bird's-Foot-Trefoil (<i>Lotus corniculatus</i>)	Japanese-Knotweed (<i>Reynoutria japonica</i>)
Black Locust (<i>Robinia pseudoacacia</i>)	Japanese Stilt Grass (<i>Microstegium vimineum</i>)
Bull Thistle (<i>Cirsium vulgare</i>)	Jetbead (<i>Rhodotypos scandens</i>)
Lesser Burdock (<i>Arctium minus</i>)	Leafy Spurge (<i>Euphorbia esula</i>)
Canadian Goldenrod (<i>Solidago canadensis</i>)	Littleleaf Linden (<i>Tilia cordata</i>)
Canadian Thistle (<i>Cirsium arvense</i>)	Morrow's Honeysuckle (<i>Lonicera morrowii</i>)
Cat-Tail (<i>Typha</i> spp.)	Nodding Plumeless-Thistle (<i>Carduus nutans</i>)
Chinese Yam (<i>Discorea oppositifolia</i>)	Privet (<i>Ligustrum</i> spp.)
Common Reed (<i>Phragmites australis</i>)	Purple Loosestrife (<i>Lythrum salicaria</i>)
Crack Willow (<i>Salix fragilis</i>)	Ragweed (<i>Ambrosia</i> spp.)
Creeping-Jenny (<i>Lysimachia nummularia</i>)	Rambler Rose (<i>Rosa multiflora</i>)
Crownvetch (<i>Securigera varia</i>)	Red/White Clover (<i>Trifolium</i> spp.)
Curly Pondweed (<i>Potamageton crispus</i>)	Reed Canary Grass (<i>Phalaris arundinacea</i>)
Dames Rocket (<i>Hesperis matronalis</i>)	Russian Olive (<i>Elaeagnus angustifolia</i>)
Eurasian-Buttercup (<i>Ficaria verna</i>)	Sandbar Willow (<i>Salix interior</i>)
Eurasian Water-Milfoil (<i>Myriophyllum spicatum</i>)	Seaside Goldenrod (<i>Solidago sempervirens</i>)
European Barberry (<i>Berberis vulgaris</i>)	Showy Fly-Honeysuckle (<i>Lonicera x bella</i>)
European Buckthorn (<i>Rhamnus cathartica</i>)	Spotted Knapweed (<i>Centaurea stoebe</i> subsp. <i>micranthos</i>)
Garlic-Mustard (<i>Alliaria petiolata</i>)	Tall Goldenrod (<i>Solidago altissima</i>)
Giant Hogweed (<i>Heracleum mantegazzianum</i>)	Teasel (<i>Dipsacus</i> spp.)
Glossy False Buckthorn (<i>Frangula alnus</i>)	Twinsisters (<i>Lonicera tatarica</i>)
Greater Flowering-Rush (<i>Butomus umbellatus</i>)	Watercress (<i>Nasturtium officinale</i>)
Japanese Barberry (<i>Berberis thunbergii</i>)	Wild Parsnip (<i>Pastinaca sativa</i>)
Japanese Bristle Grass (<i>Setaria faberii</i>)	Yellow Sweet-Clover (<i>Melilotus officinalis</i>)

MOWING. During the first two growing seasons after seeding, mowing or selective weed whipping the vegetation on the prairie slopes should occur as needed to maintain a plant height of no greater than 18 to 20 inches. To accomplish this, high-mowing the vegetation to a height of 6 to 9 inches several times during the growing season will be needed. Mowing will aid new plant growth as to allow more sunlight to reach young prairie seedlings. Mowing will aid in the control of annual weeds, which can undermine seeding efforts.

HERBICIDE APPLICATION. Management of the vegetation in all areas should include selective application of herbicide to control aggressive plant species, such as, but not limited to, reed canary grass (*Phalaris arundinacea*), cattails (*Typha* spp), purple loosestrife (*Lythrum salicaria*), common reed (*Phragmites australis*), thistles (*Cirsium* spp.), teasel (*Dipsacus* spp.), and sweet clovers (*Melilotus* spp.). These species, including others, can displace desirable species, thereby reducing floristic diversity in the naturalized areas. Controlling these species will be required to achieve the performance standards for the project.

Natural regeneration of cattails, common reed and reed canary grass in the stormwater areas may likely occur following construction. A pre-planting control shall be conducted if any of these species or other weeds are present. Hand pulling cattails can be conducted when the cattails are small enough to ensure that the entire root is removed. Off-site disposal of cattails will be required. Larger cattails will require herbicide applications. Cattail and common reed coverage can be no greater than 5% in aggregate prior to plant installation. Aggressive control of these species will be required after planting throughout the management period to ensure plant

establishment. After planting, the hand-wick application method to control these species will likely be required.

A determination regarding the type of herbicide to be used and timing of treatments should be made when it is known which nuisance species are present on the site. Depending on the target weed species, a selective herbicide may be available. The choice of herbicide and timing of herbicide application will be made by a trained, experienced professional based on the target weed species and conditions. Care should be taken to monitor site weather conditions to limit herbicide drift, overspray, and ensure it is rainfast.

A minimum of four annual weed control application periods shall be conducted throughout the three-year period. Below is a general guideline on the suggested schedule and target species for the application periods:

1. Application Period One (early spring – April/May): problematic species such as, but not limited to, reed canary grass, red/white clover, cool season adventive grasses.
2. Application Period Two (late spring to early summer – May/June): problematic species such as, but not limited to, teasel, white/yellow sweet clover, thistle.
3. Application Period Three (mid to late summer – July/August): problematic species such as, but not limited to, tall goldenrod, hairy aster, ragweed, cattails, purple loosestrife.
4. Application Period Four (late summer and fall – September/October): problematic species such as, but not limited to, reed canary grass, thistle, common reed, red/white clover, cool season grasses.

ECOLOGICAL MONITORING AND REPORTING

Ecological monitoring and reporting shall be conducted in accordance with the following requirements for the duration of the three-year management and monitoring period. The duration of the monitoring and reporting program is three years, beginning with the completion of grading and planting.

1. CONTRACTOR shall prepare a vegetation map exhibit based on as-built survey prepared following completion of planting and seeding activities shall be submitted with the first year monitoring report.
2. On an annual basis during the management and monitoring period, CONTRACTOR shall conduct quantitative vegetative sampling using time-meandered methodology and/or transects, preferably at the same time each year (i.e., within 10 days of previous years' sampling) in the months of July or August. Data collected shall quantifiably show the sites progress towards the project's performance standards (Planting Plan – Fairgrounds Pond Performance Standards)
3. CONTRACTOR shall conduct a floristic inventory for each plant community in the restoration areas twice per year during the management and monitoring period. The first floristic inventory shall be conducted during May/June and the second shall be performed in conjunction with the July/August transect sampling. The data collected shall be analyzed and evaluated using the Floristic Quality Assessment (FQA) Computer Program and shall include:

- a. An inventory of the vascular plants in each restoration area.
 - b. An inventory of the total number of taxa and total native taxa in the entire restoration area. Calculate native mean C value, native FQI, and native mean wetness coefficient.
4. CONTRACTOR shall maintain photo documentation of site conditions and activities conducted throughout the management period. In addition, CONTRACTOR shall establish several permanent photo points depicting general site conditions within each community to document changes to the areas throughout the management period. These photos shall be incorporated into annual monitoring reports.
5. CONTRACTOR shall evaluate the status of the restoration area relative to the performance standards.
6. CONTRACTOR shall provide a summary of management activities conducted during the year, including a description of the activities, associated activity photos, areas treated and dates. CONTRACTOR shall also provide all memos submitted that describe weed control work with payment requests during the year.
7. CONTRACTOR shall prepare a management plan and schedule of management activities for the following year.
8. CONTRACTOR shall prepare and submit an annual monitoring report to the ENGINEER by January 15 each year of the management and monitoring period. The CONTRACTOR is expected to submit a draft copy to the ENGINEER for review purposes. Upon obtaining approval one final electronic version of the report shall be provided to the ENGINEER. The monitoring report must document the data collected during the year's monitoring inspections. The annual report must include a review of site progression towards meeting the performance standards and propose any necessary remedial actions. More specifically, the monitoring report must contain the information referenced above, which will be based on data collected during the monitoring inspections.

Measurement and Basis for Payment: Payment is based on each planted area (SEEDING, CLASS 4B) meeting all performance standards for the applicable year. Partial payment will not be allowed. CONTRACTOR will submit data to the ENGINEER sufficient to document that the site has met performance standards. CONTRACTOR may request payment at the end of the first and second growing season. CONTRACTOR may request payment for management Year 3 when the OWNER agrees that all standards are met, and the regulatory authority has signed off on the performance standards required in the stormwater permit. This work shall be paid for at the lump sum price per YEAR for VEGETATION MANAGEMENT, ECOLOGICAL MONITORING AND REPORTING. The price shall include all necessary labor, material and equipment needed to perform the work described herein and as specified on the plans.

AVAILABLE REPORTS

- No project specific reports were prepared.

When applicable, the following checked reports and record information is available for Bidders' reference upon request:

- Record structural plans
- Preliminary Site Investigation (PSI)
- Preliminary Environmental Site Assessment (PESA)
- Soils/Geotechnical Report
- Boring Logs
- Pavement Cores
- Location Drainage Study (LDS)
- Hydraulic Report
- Noise Analysis
- Other: 662 forms

Those seeking these reports should request access from:

Sarang A. Lagvankar, P.E.
City of Wheaton Department of Engineering
(630)-260-2067
SLagvankar@wheaton.il.us

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

Source Site Certification by Owner or Operator for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation LPC-662

Revised in accordance with 35 Ill. Adm. Code 1100, as
amended by PCB R2012-009 (eff. Aug. 27, 2012)

This certification form is to be used by source site owners and operators to certify, pursuant to 35 Ill. Adm. Code 1100.205(a)(1) (A), that soil (i) was removed from a site that is not potentially impacted property and is presumed to be uncontaminated soil and (ii) is within a pH range of 6.25 to 9.0. If you have questions about this form, please telephone the Bureau of Land Permit Section at 217/524-3300.

This form may be completed online, saved locally, printed and signed, and submitted to prospective clean construction or demolition debris fill operations or uncontaminated soil fill operations.

I. Source Location Information

(Describe the location of the source of the uncontaminated soil)

Project Name: IL Route 38 Pedestrian Bridge Office Phone Number, if available: _____

Physical Site Location (Street, Road): (Approximately) 2082 Roosevelt Rd

City: Wheaton State: IL Zip Code: 60187 County: DuPage

Township: Milton

Lat/Long of approximate center of site in decimal degrees (DD.ddddd) to five decimal places (e.g., 40.67890, -90.12345):

Latitude: 41.8578 Longitude: - 88.13754
(Decimal Degrees) (-Decimal Degrees)

Identify how the lat/long data were determined:

GPS Map Interpolation Photo Interpolation Survey Other

IEPA Site Number(s), if assigned: BOL: _____ BOW: _____ BOA: _____

Approximate Start Date (mm/dd/yyyy): Sep 1, 2024 Approximate End Date (mm/dd/yyyy): Sep 1, 2025

Estimated Volume of debris (cu. Yd.): _____

II. Owner/Operator Information for Source Site

Site Owner

Name: _____ City of Wheaton
Street Address: _____ 393 W. Wesley Street
PO Box: _____
City: _____ Wheaton State: _____ IL
Zip Code: _____ 60187 Phone: _____ 630.260.2000
Contact: _____

Email, if available: _____

Site Operator

Name: _____
Street Address: _____
PO Box: _____
City: _____ State: _____
Zip Code: _____ Phone: _____
Contact: _____

Email, if available: _____

This Agency is authorized to require this information under Section 4 and Title X of the Environmental Protection Act (415 ILCS 5/4, 5/39). Failure to disclose this information may result in: a civil penalty of not to exceed \$50,000 for the violation and an additional civil penalty of not to exceed \$10,000 for each day during which the violation continues (415 ILCS 5/42). This form has been approved by the Forms Management Center.

Source Site Certification

III. Descriptions of Current and Past Uses of Source Site

Describe the current and past uses of the site and nearby properties.* Attach additional information as needed. The description must take into account, at a minimum, the following for the source site and for nearby property: (1) use of the properties for commercial or industrial purposes; (2) the use, storage or disposal of chemical or petroleum products in individual containers greater than 5 gallons or collectively more than 50 gallons; (3) the current or past presence of any storage tanks (above ground or underground); (4) any waste storage, treatment or disposal at the properties; (5) any reported releases or any environmental cleanup or removal of contaminants; (6) any environmental liens or governmental notification of environmental violations; (7) any contamination in a well that exceeds the Board's groundwater quality standards; (8) the use, storage, or disposal of transformers or capacitors manufactured before 1979; and (9) any fill dirt brought to the properties from an unknown source or site.

Number of pages attached: _____

See Attachment 1

*The description must be sufficient to demonstrate that the source site is not potentially impacted property, thereby allowing the source site owner or operator to provide this certification.

IV. Soil pH Testing Results

Describe the results of soil pH testing showing that the soil pH is within the range of 6.25 to 9.0 and attach any supporting documentation.

Number of pages attached: _____

See Attachment 1

V. Source Site Owner, Operator or Authorized Representative's Certification Statement and Signature

In accordance with the Illinois Environmental Protection Act [415 ILCS 5/22.51 or 22.51a] and 35 Ill. Adm. Code 1100.205(a), I Jonathan Shuptar (owner, operator or authorized representative of source site) certify that this site is not a potentially impacted property and the soil is presumed to be uncontaminated soil. I also certify that the soil pH is within the range of 6.25 to 9.0. I further certify that the soil has not been removed from the site as part of a cleanup or removal of contaminants. Additionally, I certify that I am either the site owner or operator or a duly authorized representative of the site owner or site operator and am authorized to sign this form. Furthermore, I certify that all information submitted, including but not limited to, all attachments and other information, is to the best of my knowledge and belief, true, accurate and complete.

Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony. (415 ILCS 5/44(h))

Owner

Operator

Jonathan Shuptar

Printed Name

Signature

Owner's Duly Authorized Representative

Operator's Duly Authorized Representative

8/8/2024

Date

ATTACHMENT 1

Source Site Certification by Owner or Operator for Use of Uncontaminated Soil as Fill in a CCDD or Uncontaminated Soil Fill Operation (LPC-662)

DATE: 08/08/24

SOURCE OWNER: City of Wheaton

OPERATOR: TBD

PROJECT: Illinois Route 38 Pedestrian Bridge

APPROXIMATE ADDRESS: 2082 Roosevelt Rd, Wheaton, IL 60187

DESCRIPTION OF SOURCE:

The proposed sidewalk improvement project includes the construction of a pedestrian bridge along the south side of IL Route 38, over Winfield Creek, in Wheaton, IL. It is assumed that the proposed construction activities for the project will generate excess soil that will require offsite disposal. The proposed improvements do not anticipate any excavation or dredging of creek sediments. A historical and environmental records review has revealed that the source location has been agricultural or undeveloped land dating back to at least 1939. The Source site is adjacent to the Marian Park Apartments, and undeveloped land associated with the entrance to the Marianjoy Rehabilitation Hospital and the Wheaton Franciscan Sisters. The source is not considered a Potentially Impacted Property. Soils generated from this source are assumed to be uncontaminated. Source Site limits are shown in **Figure 1**.

SECTION III DESCRIPTION OF CURRENT AND PAST USES OF SOURCE SITE:

Summary of current and Past Uses of the Source Site and Nearby Properties:

Based on a geodatabase search for the Source Site, the source has been agricultural or undeveloped land dating back to at least 1939. Historic photographs depict the Site as agricultural farmland and undeveloped farmland from 1939 to 1962. The 1972 aerial photo depicts the construction of the Marian Park Apartments at the west adjacent property. The records review did not identify any environmental concerns within the project area. The EDR did identify a LUST incident associated with the Franciscan Sisters, but the LUST incident has an NFR and the LUST closure documents indicate any residual impacted soil is over 1500 ft from the proposed construction. The review of the Source Site history demonstrates eligibility for LPC – 662 Certification based on the following:

- (1) Use of the properties for industrial and commercial properties.
 - There is no record of industrial or commercial use of the source site.
- (2) The use, storage or disposal of chemical or petroleum products in individual containers greater than 5 gallons or collectively more than 50 gallons.
 - There is no evidence of current or historical storage, disposal, or improper use of chemical or petroleum products in individual containers greater than 5-gallons or collectively more than 50-gallons at the Source Site.

(3) The current or past presence of any storage tanks (above ground or underground).

- Regulatory records and Source Site observations do not indicate the current or past presence of above ground or underground storage tanks on the Source Site.

(4) Any waste storage, treatment or disposal at the properties

- Regulatory records and Source Site observations do not indicate waste storage, treatment, or disposal at the Source Site.

(5) Any reported releases or any environmental cleanup or removal of contaminants.

- There are no observed, reported or known releases or environmental cleanup and no removal of contaminants at the Source Site.

(6) Any environmental liens or governmental notifications or environmental violations.

- Known environmental liens, governmental notifications, and environmental violations were not reported in connection to the Source Site, and violations and notifications were not listed in regulatory records reviewed.

(7) Any contamination in a well that exceeds the Board's groundwater quality standards.

- No reported wells with contamination that exceeds the Board's groundwater quality standards are known to be located on the Source Site.

(8) The use, storage, or disposal of transformers or capacitors manufactured before 1979.

- No evidence of the use, storage, or disposal of transformers or capacitors manufactured before 1979 was observed or documented to have been at the Source Site.

(9) Any fill dirt brought to the properties from an unknown source or site.

- No known or observed fill dirt has been brought to the Source Site from an unknown source or site.

SECTION IV SOIL PH TESTING RESULTS:

Sampling Approach:

Based on the review of the Site Source history, the Source Site is not considered a Potentially Impacted Property (PIP) and according to 35 Ill. Adm. Code 1100.205(a)(1)(A), the soils generated from this project are presumed to be uncontaminated. To complete the certification through the LPC – 662 and demonstrate compliance with CCDD regulations, the soils must have a pH within the acceptable range of 6.25 to 9.0.

A total of 2 soil samples were collected from the source site. Soil samples were collected from geotechnical soil borings advanced by NASHnai Soil Testing. Soil samples were analyzed by Eurofins Chicago for pH. One sample was collected from each side of Winfield Creek.

Sample Results and Conclusion:

Both samples had a pH within the acceptable range of 6.25 and 9.0 (See attached Lab Analytical Report). Project soils from the source site meet the criteria of Title 35: Subtitle J: Chapter I: Part 1100 for acceptance as CCDD fill material.

FACILITY ACCEPTANCE AND UNCHARACTERIZE CONDITIONS:

Demonstration of compliance with CCDD regulations and achievement of the Maximum Allowable Concentrations (MACs) does not guarantee soils and fill material will be accepted at all CCDD/Uncontaminated Soil Fill Operations (USFO). CCDD/USFO facilities are privately operated facilities and reserve the right to reject fill material on any criteria. This CCDD soil evaluation was conducted in accordance with applicable Illinois clean fill regulations and general industry standards. It is the earthwork contractor's responsibility to coordinate acceptance with the selected facility based on this documentation. CCDD/USFO facilities may have acceptance criteria which is more stringent than the minimum requirements of Title 35: Subtitle J: Chapter I: Part 1100. Any additional sampling or soil evaluation required by a contractor selected CCDD/USFO facility is the responsibility of the contractor, and can be provided by V3 at additional cost.

Environmental, geological, and geotechnical conditions can vary from those encountered at times and locations where data was obtained and may result in uncertainty with respect to the interpretation of these conditions, despite the use of standard professional care. V3 has used a level of care ordinarily exercised by professional consultants acting under similar circumstances in performing these services. Should conditions inconsistent with the findings contained within this report be encountered during the course of the project, project soils should be reevaluated.

50 0 50 100
Feet

7325 Janes Avenue
Woodridge, IL 60517
630.724.9200 phone
www.v3co.com

PROJECT NO.:
240268

CREATED BY:
JAK

DATE:
08/06/2024

SCALE:
See Scale Bar

CLIENT:
City of Wheaton
303 W. Wesley Street
Wheaton, Illinois 60187

BASE LAYER:
DuPage County
Aerial Imagery
2023

TITLE:

SITE:

Pedestrian Bridge
County Farm Rd & Roosevelt Rd Intersection
Wheaton, DuPage County, Illinois

J:\2024\240268\EnvGeo\Geodatabases\Fig1_prjloc_240268.mxd

Visio, Vertere, Virtute...
"The Vision To Transform with Excellence"

Legend

- Boring
- Project Area

SAMPLE LOCATIONS

1

ANALYTICAL REPORT

PREPARED FOR

Attn: Umar T Ahmad
NASHnal Soil Testing, LLC
23856 W. Andrew Road
Unit 103
Plainfield, Illinois 60585

Generated 6/11/2024 2:19:56 PM

JOB DESCRIPTION

240268 Roosevelt

JOB NUMBER

500-251511-1

Eurofins Chicago
2417 Bond Street
University Park IL 60484

See page two for job notes and contact information.

Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated
6/11/2024 2:19:56 PM

Authorized for release by
Jim Knapp, Senior Project Manager
Jim.Knapp@et.eurofinsus.com
(630)758-0262

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	10
QC Association	11
QC Sample Results	12
Chronicle	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	16

Case Narrative

Client: NASHnal Soil Testing, LLC
Project: 240268 Roosevelt

Job ID: 500-251511-1

Job ID: 500-251511-1

Eurofins Chicago

Job Narrative 500-251511-1

Receipt

The samples were received on 06/03/24 15:27. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 26.9° C.

Receipt Exceptions

The samples were received at the laboratory outside the required temperature criteria: There was no cooling media present in the cooler.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Detection Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'

Lab Sample ID: 500-251511-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: B-2 1'-2.5'

Lab Sample ID: 500-251511-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Method Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method	Method Description	Protocol	Laboratory
9045D	pH	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Sample Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-251511-1	B-1 3.5'-5'	Solid	05/31/24 10:00	06/03/24 15:27
500-251511-2	B-2 1'-2.5'	Solid	06/03/24 10:30	06/03/24 15:27

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/07/24 16:31	1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/10/24 17:18	1

Definitions/Glossary

Client: NASHnai Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

□	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

General Chemistry

Analysis Batch: 771728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-1	B-1 3.5'-5'	Total/NA	Solid	9045D	
500-251511-1 DU	B-1 3.5'-5'	Total/NA	Solid	9045D	

Analysis Batch: 771890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-2	B-2 1'-2.5'	Total/NA	Solid	9045D	
LCS 500-771890/2	Lab Control Sample	Total/NA	Solid	9045D	
LCSD 500-771890/3	Lab Control Sample Dup	Total/NA	Solid	9045D	

QC Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method: 9045D - pH

Lab Sample ID: 500-251511-1 DU

Matrix: Solid

Analysis Batch: 771728

Client Sample ID: B-1 3.5'-5'

Prep Type: Total/NA

Analyte	Sample Result	Sample Qualifier	DU Result	DU Qualifier	Unit	D	RPD	RPD Limit
pH	8.1		8.3		SU		3	5

Lab Chronicle

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771728	SO	EET CHI	06/07/24 16:31

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771890	SO	EET CHI	06/10/24 17:18

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Accreditation/Certification Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Illinois	NELAP	IL00035	05-31-25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Chain of Custody Record 732519

Address _____

 eurofins

Environment Testing
America

TAL-8210

Client Contact		Project Manager			Site Contact		Date		COC No	
Company Name NASHNAL SOIL TESTING	Address 23856 W ANDREW RD #103	Tel/Email			Lab Contact		Carrier		of COCs	
City/State/Zip PLAINFIELD, IL, 60585		Analysis Turnaround Time							Sampler	
Phone 630 780 5201		<input type="checkbox"/> CALENDAR DAYS <input type="checkbox"/> WORKING DAYS TAT if different from Below _____							For Lab Use Only	
Fax		<input type="checkbox"/> 2 weeks <input type="checkbox"/> 1 week <input type="checkbox"/> 2 days <input type="checkbox"/> 1 day							Walk in Client	
Project Name 240268 ROOSEVELT Rd									Lab Sampling	
Site									Job / SDG No	
P O #									500-251511	
Sample Identification		Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont	Filtered Sample (Y/N)	Perform MS/MSD (Y/N)	Sample Specific Notes	
B-1 3.5'-5'		5/31	10AM	6	Soil	1	N	Y		
B-2 1'-2.5'		6/3	10:30AM	6	Soil	1	N	Y		
Preservation Used: 1=Ice, 2=HCl; 3=H ₂ SO ₄ ; 4=HNO ₃ , 5=NaOH; 6= Other _____										
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample										Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
<input type="checkbox"/> Non Hazard <input type="checkbox"/> Flammable <input type="checkbox"/> Skin Irritant <input type="checkbox"/> Poison B <input type="checkbox"/> Unknown					<input type="checkbox"/> Return to Client <input type="checkbox"/> Disposal by Lab <input type="checkbox"/> Archive for _____ Months					
Special Instructions/QC Requirements & Comments: Run pH test only										
Custody Seals Intact <input type="checkbox"/> Yes <input type="checkbox"/> No		Custody Seal No			27	Cooler Temp (°C) Obs'd 27.4	Corr'd 26.9	Therm ID No		
Relinquished by Adam Arroyo		Company Nashnal		Date/Time 6-3-24 3:10 pm	Received by		Company	Date/Time		
Relinquished by		Company		Date/Time	Received by		Company	Date/Time		
Relinquished by		Company		Date/Time	Received in Laboratory by Patricia EETA		Company	Date/Time	1527	

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Login Sample Receipt Checklist

Client: NASHnai Soil Testing, LLC

Job Number: 500-251511-1

Login Number: 251511

List Source: Eurofins Chicago

List Number: 1

Creator: Schmidt, Kara

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	26.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

IL 38 Pedestrian Bridge

2082 Roosevelt Rd

Wheaton, IL 60187

Inquiry Number: 7715033.2s

July 23, 2024

EDR Summary Radius Map Report

6 Armstrong Road, 4th floor
Shelton, CT 06484
Toll Free: 800.352.0050
www.edrnet.com

TABLE OF CONTENTS

<u>SECTION</u>	<u>PAGE</u>
Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	8
Orphan Summary	32
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting SSURGO Soil Map	A-5
Physical Setting Source Map	A-20
Physical Setting Source Map Findings	A-22
Physical Setting Source Records Searched	PSGR-1

Thank you for your business.
Please contact EDR at 1-800-352-0050
with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. **NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT.** ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA) INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2024 by Environmental Data Resources, LLC. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, LLC, or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E1527 - 21), the ASTM Standard Practice for Environmental Site Assessments for Forestland or Rural Property (E2247 - 16), the ASTM Standard Practice for Limited Environmental Due Diligence: Transaction Screen Process (E1528 - 22) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

2082 ROOSEVELT RD
WHEATON, IL 60187

COORDINATES

Latitude (North): 41.8577610 - 41° 51' 27.93"
Longitude (West): 88.1375420 - 88° 8' 15.15"
Universal Tranverse Mercator: Zone 16
UTM X (Meters): 405578.7
UTM Y (Meters): 4634396.0
Elevation: 717 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property:	TP
Source:	U.S. Geological Survey
Target Property:	SE
Source:	U.S. Geological Survey

AERIAL PHOTOGRAPHY IN THIS REPORT

Portions of Photo from:	20190914, 20190809
Source:	USDA

MAPPED SITES SUMMARY

Target Property Address:
 2082 ROOSEVELT RD
 WHEATON, IL 60187

Click on Map ID to see full detail.

MAP ID	SITE NAME	ADDRESS	DATABASE ACRONYMS	RELATIVE ELEVATION	DIST (ft. & mi.) DIRECTION
A1	FRANCISCAN SISTERS	26W171 ROOSEVELT ROA	LUST	Higher	403, 0.076, East
A2	FRANCISCAN SISTERS	26W171 ROOSEVELT RD.	UST FINDER RELEASE	Higher	403, 0.076, East
A3	FRANCISCANS SISTERS	26W171 ROOSEVELT RD.	UST FINDER RELEASE	Higher	403, 0.076, East
A4	MARIANJOY REHABILITA	26 W 171 ROOSEVELT R	RCRA-VSQG, E MANIFEST	Higher	403, 0.076, East
5	FRANCISCANS SISTERS	26W171 ROOSEVELT RD.	LUST	Higher	728, 0.138, ENE
B6	ST FRANCIS HIGH SCHO	2130 W ROOSEVELT RD	RCRA-VSQG, FINDS, ECHO	Higher	1195, 0.226, SW
B7	ST FRANCIS HIGH SCH	2130 W ROOSEVELT RD	UST	Higher	1195, 0.226, SW
B8	ST FRANCIS HIGH SCH	2130 W ROOSEVELT RD	UST FINDER	Higher	1195, 0.226, SW
C9	HOCKER, BEVERLY	2185 WEST ROOSEVELT	LUST	Higher	1382, 0.262, West
C10	HOCKER, BEVERLY	2185 WEST ROOSEVELT	UST FINDER RELEASE	Higher	1382, 0.262, West
D11	COMMUNITY SCHOOL DIS	130 NORTH HAZELTON	UST FINDER RELEASE	Higher	2474, 0.469, North
D12	COMMUNITY SCHOOL DIS	130 NORTH HAZELTON	LUST	Higher	2516, 0.477, North

EXECUTIVE SUMMARY

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in ***bold italics*** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STANDARD ENVIRONMENTAL RECORDS

Lists of Federal RCRA generators

RCRA-VSQG: A review of the RCRA-VSQG list, as provided by EDR, and dated 06/03/2024 has revealed that there are 2 RCRA-VSQG sites within approximately 0.25 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
<i>MARIANJOY REHABILITA</i> EPA ID: ILR000167254	<i>26 W 171 ROOSEVELT R</i>	<i>E 0 - 1/8 (0.076 mi.)</i>	<i>A4</i>	<i>8</i>
<i>ST FRANCIS HIGH SCHO</i> EPA ID: ILR000047258	<i>2130 W ROOSEVELT RD</i>	<i>SW 1/8 - 1/4 (0.226 mi.)</i>	<i>B6</i>	<i>9</i>

Lists of state and tribal leaking storage tanks

LUST: A review of the LUST list, as provided by EDR, and dated 04/15/2024 has revealed that there are 4 LUST sites within approximately 0.5 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
FRANCISCAN SISTERS Incident Num: 20081785 IL EPA Id: 431055052	26W171 ROOSEVELT ROA	E 0 - 1/8 (0.076 mi.)	A1	8
FRANCISCANS SISTERS NFA/NFR Letter: 2014-10-10 NFA/NFR Letter: 1993-12-01 Incident Num: 20031205 Incident Num: 900351 IL EPA Id: 431055052	26W171 ROOSEVELT RD.	ENE 1/8 - 1/4 (0.138 mi.)	5	8
HOCKER, BEVERLY	2185 WEST ROOSEVELT	W 1/4 - 1/2 (0.262 mi.)	C9	9

EXECUTIVE SUMMARY

NFA/NFR Letter: 2013-01-17
 Incident Num: 910276
 IL EPA Id: 431055066

COMMUNITY SCHOOL DIS	130 NORTH HAZELTON	N 1/4 - 1/2 (0.477 mi.)	D12	10
NFA/NFR Letter: 2001-07-12				
Incident Num: 890275				
IL EPA Id: 431055041				

Lists of state and tribal registered storage tanks

UST: A review of the UST list, as provided by EDR, and dated 04/16/2024 has revealed that there is 1 UST site within approximately 0.25 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
ST FRANCIS HIGH SCH Tank Status: Removed Status: CLOSED Facility Id: 2029759	2130 W ROOSEVELT RD	SW 1/8 - 1/4 (0.226 mi.)	B7	9

ADDITIONAL ENVIRONMENTAL RECORDS

Other Ascertainable Records

UST FINDER: A review of the UST FINDER list, as provided by EDR, and dated 06/08/2023 has revealed that there is 1 UST FINDER site within approximately 0.25 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
ST FRANCIS HIGH SCH	2130 W ROOSEVELT RD	SW 1/8 - 1/4 (0.226 mi.)	B8	9

UST FINDER RELEASE: A review of the UST FINDER RELEASE list, as provided by EDR, and dated 06/08/2023 has revealed that there are 4 UST FINDER RELEASE sites within approximately 0.5 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
FRANCISCAN SISTERS	26W171 ROOSEVELT RD.	E 0 - 1/8 (0.076 mi.)	A2	8
FRANCISCANS SISTERS	26W171 ROOSEVELT RD.	E 0 - 1/8 (0.076 mi.)	A3	8
HOCKER, BEVERLY	2185 WEST ROOSEVELT	W 1/4 - 1/2 (0.262 mi.)	C10	10
COMMUNITY SCHOOL DIS	130 NORTH HAZELTON	N 1/4 - 1/2 (0.469 mi.)	D11	10

EXECUTIVE SUMMARY

E MANIFEST: A review of the E MANIFEST list, as provided by EDR, and dated 07/24/2023 has revealed that there is 1 E MANIFEST site within approximately 0.25 miles of the target property.

<u>Equal/Higher Elevation</u>	<u>Address</u>	<u>Direction / Distance</u>	<u>Map ID</u>	<u>Page</u>
MARIANJOY REHABILITA	26 W 171 ROOSEVELT R	E 0 - 1/8 (0.076 mi.)	A4	8

Count: 0 records.

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)
		NO SITES FOUND			

OVERVIEW MAP - 7715033.2S

Target Property

▲ Sites at elevations higher than or equal to the target property

◆ Sites at elevations lower than the target property

▲ Manufactured Gas Plants

■ National Priority List Sites

■ Dept. Defense Sites

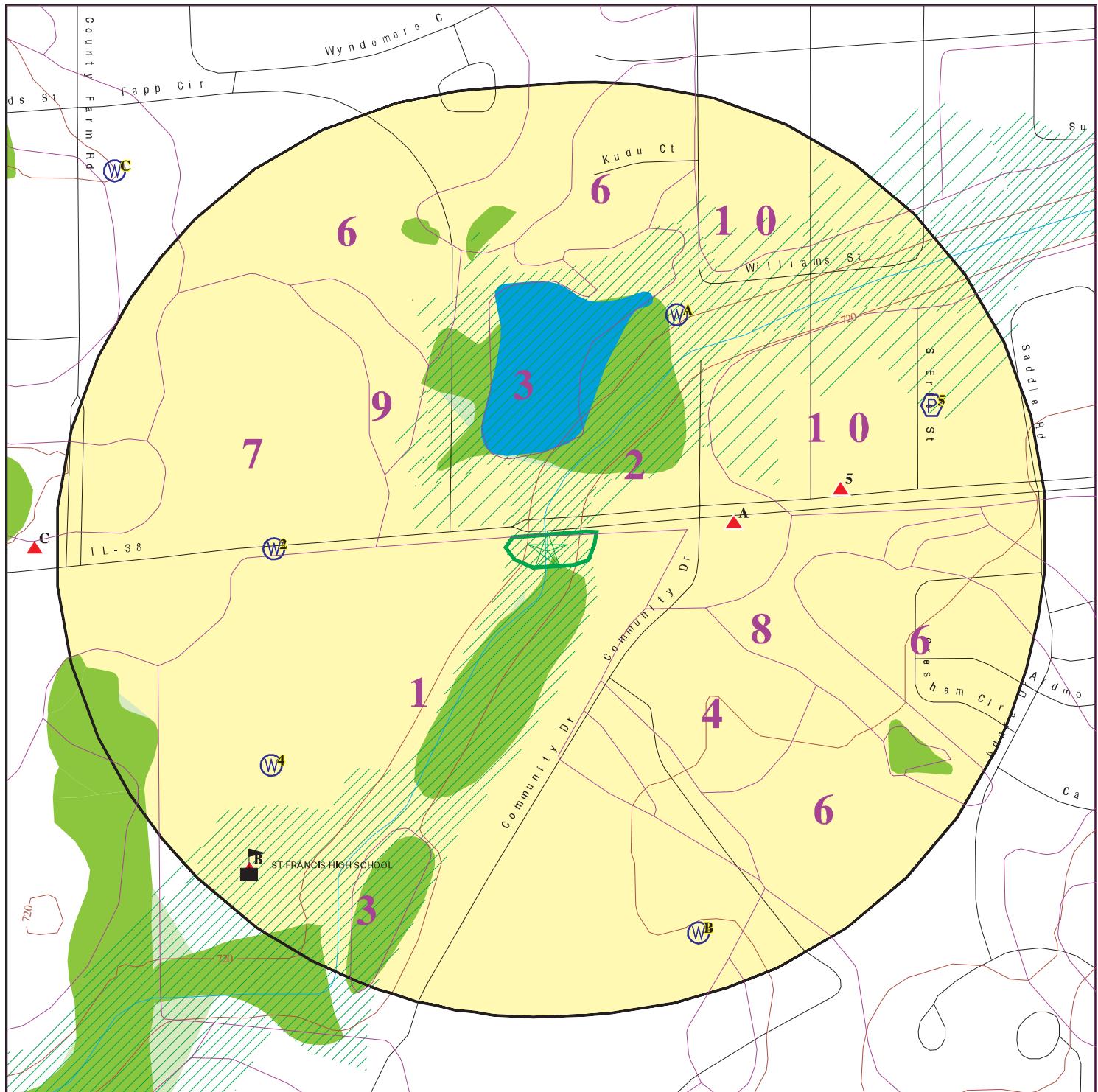
Indian Reservations BIA

▲ Power transmission lines

■ Special Flood Hazard Area (1%)

■ 0.2% Annual Chance Flood Hazard

■ National Wetland Inventory


■ State Wetlands

This report includes Interactive Map Layers to display and/or hide map information. The legend includes only those icons for the default map view.

SITE NAME: IL 38 Pedestrian Bridge
 ADDRESS: 2082 Roosevelt Rd
 Wheaton IL 60187
 LAT/LONG: 41.857761 / 88.137542

CLIENT: V3 Companies of IL, LTD
 CONTACT: Jonathan Shuptrar
 INQUIRY #: 7715033.2s
 DATE: July 23, 2024 11:36 am

DETAIL MAP - 7715033.2S

Target Property

Sites at elevations higher than or equal to the target property

Sites at elevations lower than the target property

Manufactured Gas Plants

Sensitive Receptors

National Priority List Sites

Dept. Defense Sites

- Indian Reservations BIA
- Special Flood Hazard Area (1%)
- 0.2% Annual Chance Flood Hazard
- National Wetland Inventory
- State Wetlands

This report includes Interactive Map Layers to display and/or hide map information. The legend includes only those icons for the default map view.

SITE NAME: IL 38 Pedestrian Bridge
 ADDRESS: 2082 Roosevelt Rd
 Wheaton IL 60187
 LAT/LONG: 41.857761 / 88.137542

CLIENT: V3 Companies of IL, LTD
 CONTACT: Jonathan Shuptar
 INQUIRY #: 7715033.2s
 DATE: July 23, 2024 11:40 am

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
<u>STANDARD ENVIRONMENTAL RECORDS</u>								
<i>Lists of Federal NPL (Superfund) sites</i>								
NPL	1.000		0	0	0	0	NR	0
Proposed NPL	1.000		0	0	0	0	NR	0
NPL LIENS	1.000		0	0	0	0	NR	0
<i>Lists of Federal Delisted NPL sites</i>								
Delisted NPL	1.000		0	0	0	0	NR	0
<i>Lists of Federal sites subject to CERCLA removals and CERCLA orders</i>								
FEDERAL FACILITY	0.500		0	0	0	NR	NR	0
SEMS	0.500		0	0	0	NR	NR	0
<i>Lists of Federal CERCLA sites with NFRAP</i>								
SEMS-ARCHIVE	0.500		0	0	0	NR	NR	0
<i>Lists of Federal RCRA facilities undergoing Corrective Action</i>								
CORRACTS	1.000		0	0	0	0	NR	0
<i>Lists of Federal RCRA TSD facilities</i>								
RCRA-TSDF	0.500		0	0	0	NR	NR	0
<i>Lists of Federal RCRA generators</i>								
RCRA-LQG	0.250		0	0	NR	NR	NR	0
RCRA-SQG	0.250		0	0	NR	NR	NR	0
RCRA-VSQG	0.250		1	1	NR	NR	NR	2
<i>Federal institutional controls / engineering controls registries</i>								
LUCIS	0.500		0	0	0	NR	NR	0
US ENG CONTROLS	0.500		0	0	0	NR	NR	0
US INST CONTROLS	0.500		0	0	0	NR	NR	0
<i>Federal ERNS list</i>								
ERNS	0.001		0	NR	NR	NR	NR	0
<i>Lists of state- and tribal hazardous waste facilities</i>								
SSU	1.000		0	0	0	0	NR	0
<i>Lists of state and tribal landfills and solid waste disposal facilities</i>								
CCDD	0.500		0	0	0	NR	NR	0
SWF/LF	0.500		0	0	0	NR	NR	0
LF SPECIAL WASTE	0.500		0	0	0	NR	NR	0
IL NIPC	0.500		0	0	0	NR	NR	0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
<i>Lists of state and tribal leaking storage tanks</i>								
LUST	0.500		1	1	2	NR	NR	4
INDIAN LUST	0.500		0	0	0	NR	NR	0
LUST TRUST	0.500		0	0	0	NR	NR	0
<i>Lists of state and tribal registered storage tanks</i>								
FEMA UST	0.250		0	0	NR	NR	NR	0
UST	0.250		0	1	NR	NR	NR	1
AST	0.250		0	0	NR	NR	NR	0
INDIAN UST	0.250		0	0	NR	NR	NR	0
<i>State and tribal institutional control / engineering control registries</i>								
ENG CONTROLS	0.500		0	0	0	NR	NR	0
INST CONTROL	0.500		0	0	0	NR	NR	0
<i>Lists of state and tribal voluntary cleanup sites</i>								
SRP	0.500		0	0	0	NR	NR	0
INDIAN VCP	0.500		0	0	0	NR	NR	0
<i>Lists of state and tribal brownfield sites</i>								
BROWNFIELDS	0.500		0	0	0	NR	NR	0
<u>ADDITIONAL ENVIRONMENTAL RECORDS</u>								
<i>Local Brownfield lists</i>								
US BROWNFIELDS	0.500		0	0	0	NR	NR	0
<i>Local Lists of Landfill / Solid Waste Disposal Sites</i>								
INDIAN ODI	0.500		0	0	0	NR	NR	0
ODI	0.500		0	0	0	NR	NR	0
DEBRIS REGION 9	0.500		0	0	0	NR	NR	0
IHS OPEN DUMPS	0.500		0	0	0	NR	NR	0
<i>Local Lists of Hazardous waste / Contaminated Sites</i>								
US HIST CDL	0.001		0	NR	NR	NR	NR	0
CDL	0.001		0	NR	NR	NR	NR	0
US CDL	0.001		0	NR	NR	NR	NR	0
<i>Local Land Records</i>								
LIENS 2	0.001		0	NR	NR	NR	NR	0
<i>Records of Emergency Release Reports</i>								
HMIRS	0.001		0	NR	NR	NR	NR	0
SPILLS	0.001		0	NR	NR	NR	NR	0
SPILLS 90	0.001		0	NR	NR	NR	NR	0
<i>Other Ascertainable Records</i>								
RCRA NonGen / NLR	0.250		0	0	NR	NR	NR	0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FUDS	1.000		0	0	0	0	NR	0
DOD	1.000		0	0	0	0	NR	0
SCRD DRYCLEANERS	0.500		0	0	0	NR	NR	0
US FIN ASSUR	0.001		0	NR	NR	NR	NR	0
EPA WATCH LIST	0.001		0	NR	NR	NR	NR	0
2020 COR ACTION	0.250		0	0	NR	NR	NR	0
TSCA	0.001		0	NR	NR	NR	NR	0
TRIS	0.001		0	NR	NR	NR	NR	0
SSTS	0.001		0	NR	NR	NR	NR	0
ROD	1.000		0	0	0	0	NR	0
RMP	0.001		0	NR	NR	NR	NR	0
RAATS	0.001		0	NR	NR	NR	NR	0
PRP	0.001		0	NR	NR	NR	NR	0
PADS	0.001		0	NR	NR	NR	NR	0
ICIS	0.001		0	NR	NR	NR	NR	0
FTTS	0.001		0	NR	NR	NR	NR	0
MLTS	0.001		0	NR	NR	NR	NR	0
COAL ASH DOE	0.001		0	NR	NR	NR	NR	0
COAL ASH EPA	0.500		0	0	0	NR	NR	0
PCB TRANSFORMER	0.001		0	NR	NR	NR	NR	0
RADINFO	0.001		0	NR	NR	NR	NR	0
HIST FTTS	0.001		0	NR	NR	NR	NR	0
DOT OPS	0.001		0	NR	NR	NR	NR	0
CONSENT	1.000		0	0	0	0	NR	0
INDIAN RESERV	1.000		0	0	0	0	NR	0
FUSRAP	1.000		0	0	0	0	NR	0
UMTRA	0.500		0	0	0	NR	NR	0
LEAD SMELTERS	0.001		0	NR	NR	NR	NR	0
US AIRS	0.001		0	NR	NR	NR	NR	0
US MINES	0.250		0	0	NR	NR	NR	0
ABANDONED MINES	0.250		0	0	NR	NR	NR	0
MINES MRDS	0.250		0	0	NR	NR	NR	0
FINDS	0.001		0	NR	NR	NR	NR	0
UXO	1.000		0	0	0	0	NR	0
DOCKET HWC	0.001		0	NR	NR	NR	NR	0
ECHO	0.001		0	NR	NR	NR	NR	0
FUELS PROGRAM	0.250		0	0	NR	NR	NR	0
PFAS NPL	0.250		0	0	NR	NR	NR	0
PFAS FEDERAL SITES	0.250		0	0	NR	NR	NR	0
PFAS TSCA	0.250		0	0	NR	NR	NR	0
PFAS TRIS	0.250		0	0	NR	NR	NR	0
PFAS RCRA MANIFEST	0.250		0	0	NR	NR	NR	0
PFAS ATSDR	0.250		0	0	NR	NR	NR	0
PFAS WQP	0.250		0	0	NR	NR	NR	0
PFAS NPDES	0.250		0	0	NR	NR	NR	0
PFAS PROJECT	0.250		0	0	NR	NR	NR	0
PFAS ECHO	0.250		0	0	NR	NR	NR	0
PFAS ECHO FIRE TRAIN	0.250		0	0	NR	NR	NR	0
PFAS PT 139 AIRPORT	0.250		0	0	NR	NR	NR	0
AQUEOUS FOAM NRC	0.250		0	0	NR	NR	NR	0
BIOSOLIDS	0.001		0	NR	NR	NR	NR	0

MAP FINDINGS SUMMARY

Database	Search Distance (Miles)	Target Property	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
UST FINDER	0.250		0	1	NR	NR	NR	1
UST FINDER RELEASE	0.500		2	0	2	NR	NR	4
E MANIFEST	0.250		1	0	NR	NR	NR	1
PFAS	0.250		0	0	NR	NR	NR	0
AIRS	0.001		0	NR	NR	NR	NR	0
ASBESTOS	0.001		0	NR	NR	NR	NR	0
BOL	0.001		0	NR	NR	NR	NR	0
COAL ASH	0.500		0	0	0	NR	NR	0
DRYCLEANERS	0.250		0	0	NR	NR	NR	0
Financial Assurance	0.001		0	NR	NR	NR	NR	0
HWAR	0.001		0	NR	NR	NR	NR	0
IMPDMENT	0.500		0	0	0	NR	NR	0
NPDES	0.001		0	NR	NR	NR	NR	0
PIMW	0.250		0	0	NR	NR	NR	0
TIER 2	0.001		0	NR	NR	NR	NR	0
UIC	0.001		0	NR	NR	NR	NR	0

EDR HIGH RISK HISTORICAL RECORDS

EDR Exclusive Records

EDR MGP	1.000	0	0	0	0	NR	0
EDR Hist Auto	0.125	0	NR	NR	NR	NR	0
EDR Hist Cleaner	0.125	0	NR	NR	NR	NR	0

EDR RECOVERED GOVERNMENT ARCHIVES

Exclusive Recovered Govt. Archives

RGA HWS	0.001	0	NR	NR	NR	NR	0
RGA LF	0.001	0	NR	NR	NR	NR	0
RGA LUST	0.001	0	NR	NR	NR	NR	0
- Totals --		0	5	4	4	0	0
							13

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

Map ID
Direction
Distance
Elevation

MAP FINDINGS

Site

Database(s) EDR ID Number
EPA ID Number

A1 FRANCISCAN SISTERS
East 26W171 ROOSEVELT ROAD
< 1/8 WHEATON, IL 60187
0.076 mi.
403 ft.

LUST S109366179
N/A

Relative: [Click here for full text details](#)
Higher
LUST
Incident Num 20081785
IL EPA Id 431055052

A2 FRANCISCAN SISTERS
East 26W171 ROOSEVELT RD.
< 1/8 WHEATON, IL 0
0.076 mi.
403 ft.

UST FINDER RELEASE 1028998143
N/A

Relative: [Click here for full text details](#)
Higher

A3 FRANCISCANS SISTERS
East 26W171 ROOSEVELT RD.
< 1/8 WHEATON, IL 0
0.076 mi.
403 ft.

UST FINDER RELEASE 1028998144
N/A

Relative: [Click here for full text details](#)
Higher

A4 MARIANJOY REHABILITATION HOSPITAL
East 26 W 171 ROOSEVELT RD
< 1/8 WHEATON, IL 60187
0.076 mi.
403 ft.

RCRA-VSQG 1014916618
E MANIFEST ILR000167254

Relative: [Click here for full text details](#)
Higher
RCRA-VSQG
EPA Id ILR000167254

5 FRANCISCANS SISTERS
ENE 26W171 ROOSEVELT RD.
1/8-1/4 WHEATON, IL 60189
0.138 mi.
728 ft.

LUST S104003186
N/A

Relative: [Click here for full text details](#)
Higher
LUST

NFA/NFR Letter 2014-10-10
NFA/NFR Letter 1993-12-01
Incident Num 20031205
Incident Num 900351
IL EPA Id 431055052

Map ID
Direction
Distance
Elevation

MAP FINDINGS

Site

Database(s) EDR ID Number
EPA ID Number

B6 ST FRANCIS HIGH SCHOOL
SW 2130 W ROOSEVELT RD
1/8-1/4 WHEATON, IL 60187
0.226 mi.
1195 ft.

Relative: **Higher**
[Click here for full text details](#)
RCRA-VSQG
EPA Id ILR000047258

RCRA-VSQG 1004696402
FINDS ILR000047258
ECHO

FINDS
Registry ID: 110005961511

ECHO
Registry ID 110005961511

B7 ST FRANCIS HIGH SCH
SW 2130 W ROOSEVELT RD
1/8-1/4 WHEATON, IL 60187
0.226 mi.
1195 ft.

Relative: **Higher**
[Click here for full text details](#)
UST
Status CLOSED
Facility Id 2029759
Tank Status Removed

UST U000793695
N/A

B8 ST FRANCIS HIGH SCH
SW 2130 W ROOSEVELT RD
1/8-1/4 WHEATON, IL 60187
0.226 mi.
1195 ft.

Relative: **Higher**
[Click here for full text details](#)

UST FINDER 1028316266
N/A

C9 HOCKER, BEVERLY
West 2185 WEST ROOSEVELT RD.
1/4-1/2 WHEATON, IL 60187
0.262 mi.
1382 ft.

Relative: **Higher**
[Click here for full text details](#)
LUST

NFA/NFR Letter 2013-01-17
Incident Num 910276
IL EPA Id 431055066

LUST S104526263
N/A

MAP FINDINGS

Map ID	Site	Database(s)	EDR ID Number	EPA ID Number
C10 West 1/4-1/2 0.262 mi. 1382 ft.	HOCKER, BEVERLY 2185 WEST ROOSEVELT RD. WHEATON, IL 0 Click here for full text details		UST FINDER RELEASE	1028998155 N/A
D11 North 1/4-1/2 0.469 mi. 2474 ft.	COMMUNITY SCHOOL DIST. 130 NORTH HAZELTON WHEATON, IL 0 Click here for full text details		UST FINDER RELEASE	1028998131 N/A
D12 North 1/4-1/2 0.477 mi. 2516 ft. Relative: Higher	COMMUNITY SCHOOL DIST. 130 NORTH HAZELTON WHEATON, IL 60187 Click here for full text details LUST NFA/NFR Letter 2001-07-12 Incident Num 890275 IL EPA Id 431055041		LUST	S104527904 N/A

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
IL	AIRS	Air Inventory Listing	Illinois EPA	10/20/2023	10/24/2023	01/16/2024
IL	ASBESTOS	Asbestos Notification Tracker Information	Illinois EPA	02/07/2024	03/28/2024	06/14/2024
IL	AST	Above Ground Storage Tanks	State Fire Marshal	02/16/2024	02/22/2024	05/10/2024
IL	BOL	Bureau of Land Inventory Database	Illinois Environmental Protection Agency	10/16/2023	04/23/2024	07/16/2024
IL	BROWNFIELDS	Redevelopment Assessment Database	Illinois Environmental Protection Agency	04/15/2024	04/16/2024	07/11/2024
IL	BROWNFIELDS	Municipal Brownfields Redevelopment Grant Program Project De	Illinois Environmental Protection Agency	02/11/2010	07/31/2014	09/08/2014
IL	CCDD	Clean Construction or Demolition Debris	Illinois EPA	06/20/2023	04/04/2024	04/17/2024
IL	CDL	Meth Drug Lab Site Listing	Department of Public Health	01/02/2024	01/04/2024	03/26/2024
IL	COAL ASH	Coal Ash Site Listing	Illinois EPA	10/01/2011	03/09/2012	04/10/2012
IL	DRYCLEANERS	Illinois Licensed Drycleaners	Drycleaner Environmental Response Trust Fund	02/02/2024	02/13/2024	05/07/2024
IL	ENG CONTROLS	Sites with Engineering Controls	Illinois Environmental Protection Agency	03/26/2024	03/26/2024	06/14/2024
IL	FIN ASSURANCE	Financial Assurance Information Listing	Illinois Environmental Protection Agency	02/14/2024	02/29/2024	05/21/2024
IL	HWAR	Hazard Waste Annual Report	Illinois EPA	12/31/2019	05/11/2021	08/02/2021
IL	IEMA SPILLS	Illinois Emergency Management Agency Spills	Illinois Emergency Management Agency	04/22/2024	04/23/2024	07/16/2024
IL	IL NIPC	Solid Waste Landfill Inventory	Northeastern Illinois Planning Commission	08/01/1988	04/07/2022	07/01/2022
IL	IMPDMT	Surface Impoundment Inventory	Illinois Waste Management & Research Center	12/31/1980	03/08/2002	06/03/2002
IL	Inst Control	Institutional Controls	Illinois Environmental Protection Agency	03/26/2024	03/26/2024	06/14/2024
IL	LF SPECIAL WASTE	Special Waste Site List	Illinois EPA	01/01/1990	06/17/2009	07/15/2009
IL	LF WMRC	Waste Management & Research Center Landfill Database	Department of Natural Resources	12/31/2001	10/06/2006	11/06/2006
IL	LUST	Leaking Underground Storage Tank Sites	Illinois Environmental Protection Agency	04/15/2024	04/16/2024	07/11/2024
IL	LUST TRUST	Underground Storage Tank Fund Payment Priority List	Illinois EPA	06/06/2016	07/27/2016	10/18/2016
IL	NPDES	A Listing of Active Permits	Illinois EPA	04/16/2014	04/18/2014	05/20/2014
IL	PFAS	PFAS Sampling Listing	Illinois Environmental Protection Agency	12/15/2023	12/27/2023	12/29/2023
IL	PIMW	Potentially Infectious Medical Waste	Illinois EPA	03/11/2024	03/12/2024	06/04/2024
IL	RGA HWS	Recovered Government Archive State Hazardous Waste Facilitie	Department of Natural Resources			07/01/2013
IL	RGA LF	Recovered Government Archive Solid Waste Facilities List	Illinois Environmental Protection Agency			07/01/2013
IL	RGA LUST	Recovered Government Archive Leaking Underground Storage Tan	Illinois Environmental Protection Agency			07/01/2013
IL	SPILLS	State spills	Illinois EPA	01/11/2024	04/05/2024	07/02/2024
IL	SPILLS 90	SPILLS90 data from FirstSearch	FirstSearch	07/18/2012	01/03/2013	03/15/2013
IL	SRP	Site Remediation Program Database	Illinois Environmental Protection Agency	03/26/2024	03/26/2024	06/14/2024
IL	SSU	State Sites Unit Listing	Illinois Environmental Protection Agency	01/31/2024	01/31/2024	02/13/2024
IL	SWF/LF	Available Disposal for Solid Waste in Illinois - Solid Waste	Illinois Environmental Protection Agency	12/31/2022	10/17/2023	01/08/2024
IL	TIER 2	Tier 2 Information Listing	Illinois Emergency Management Agency	12/31/2023	02/06/2024	04/26/2024
IL	UIC	Underground Injection Wells	Illinois EPA	01/03/2023	09/21/2023	12/11/2023
IL	UST	Underground Storage Tank Facility List	Illinois State Fire Marshal	04/16/2024	04/16/2024	07/12/2024
US	2020 COR ACTION	2020 Corrective Action Program List	Environmental Protection Agency	09/30/2017	05/08/2018	07/20/2018
US	ABANDONED MINES	Abandoned Mines	Department of Interior	03/18/2024	03/19/2024	06/06/2024
US	AQUEOUS FOAM NRC	Aqueous Foam Related Incidents Listing	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	BIOSOLIDS	ICIS-NPDES Biosolids Facility Data	Environmental Protection Agency	04/14/2024	04/16/2024	07/12/2024
US	BRS	Biennial Reporting System	EPA/NTIS	12/31/2021	03/09/2023	03/20/2023
US	COAL ASH DOE	Steam-Electric Plant Operation Data	Department of Energy	12/31/2022	11/27/2023	02/22/2024
US	COAL ASH EPA	Coal Combustion Residues Surface Impoundments List	Environmental Protection Agency	01/12/2017	03/05/2019	11/11/2019
US	CONSENT	Superfund (CERCLA) Consent Decrees	Department of Justice, Consent Decree Library	03/31/2024	04/19/2024	06/26/2024
US	CORRACTS	Corrective Action Report	EPA	06/03/2024	06/07/2024	06/20/2024
US	DEBRIS REGION 9	Torres Martinez Reservation Illegal Dump Site Locations	EPA, Region 9	01/12/2009	05/07/2009	09/21/2009
US	DOCKET HWC	Hazardous Waste Compliance Docket Listing	Environmental Protection Agency	05/06/2021	05/21/2021	08/11/2021
US	DOD	Department of Defense Sites	USGS	06/07/2021	07/13/2021	03/09/2022

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	DOT OPS	Incident and Accident Data	Department of Transportation, Office of Pipeline Safety	01/02/2020	01/28/2020	04/17/2020
US	Delisted NPL	National Priority List Deletions	EPA	05/22/2024	06/03/2024	06/26/2024
US	E MANIFEST	Hazardous Waste Electronic Manifest System	Environmental Protection Agency	07/24/2023	04/18/2024	06/06/2024
US	ECHO	Enforcement & Compliance History Information	Environmental Protection Agency	06/23/2024	06/28/2024	07/12/2024
US	EDR Hist Auto	EDR Exclusive Historical Auto Stations	EDR, Inc.			
US	EDR Hist Cleaner	EDR Exclusive Historical Cleaners	EDR, Inc.			
US	EDR MGP	EDR Proprietary Manufactured Gas Plants	EDR, Inc.			
US	EPA WATCH LIST	EPA Watch List	Environmental Protection Agency	08/30/2013	03/21/2014	06/17/2014
US	ERNS	Emergency Response Notification System	National Response Center, United States Coast Guard	03/13/2024	03/19/2024	06/17/2024
US	FEDERAL FACILITY	Federal Facility Site Information listing	Environmental Protection Agency	03/25/2024	03/26/2024	06/24/2024
US	FEDLAND	Federal and Indian Lands	U.S. Geological Survey	04/02/2018	04/11/2018	11/06/2019
US	FEMA UST	Underground Storage Tank Listing	FEMA	03/15/2024	03/19/2024	06/17/2024
US	FINDS	Facility Index System/Facility Registry System	EPA	02/09/2024	02/27/2024	05/24/2024
US	FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act)	EPA/Office of Prevention, Pesticides and Toxics	04/09/2009	04/16/2009	05/11/2009
US	FTTS INSP	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act)	EPA	04/09/2009	04/16/2009	05/11/2009
US	FUDS	Formerly Used Defense Sites	U.S. Army Corps of Engineers	01/30/2024	02/13/2024	04/04/2024
US	FUELS PROGRAM	EPA Fuels Program Registered Listing	EPA	02/12/2024	02/13/2024	04/04/2024
US	FUSRAP	Formerly Utilized Sites Remedial Action Program	Department of Energy	03/03/2023	03/03/2023	06/09/2023
US	HIST FTTS	FIFRA/TSCA Tracking System Administrative Case Listing	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HIST FTTS INSP	FIFRA/TSCA Tracking System Inspection & Enforcement Case Listing	Environmental Protection Agency	10/19/2006	03/01/2007	04/10/2007
US	HMIRS	Hazardous Materials Information Reporting System	U.S. Department of Transportation	06/14/2024	06/17/2024	06/24/2024
US	ICIS	Integrated Compliance Information System	Environmental Protection Agency	11/18/2016	11/23/2016	02/10/2017
US	IHS OPEN DUMPS	Open Dumps on Indian Land	Department of Health & Human Services, Indian Health Service	04/01/2014	08/06/2014	01/29/2015
US	INDIAN LUST R1	Leaking Underground Storage Tanks on Indian Land	EPA Region 1	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R10	Leaking Underground Storage Tanks on Indian Land	EPA Region 10	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R4	Leaking Underground Storage Tanks on Indian Land	EPA Region 4	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R5	Leaking Underground Storage Tanks on Indian Land	EPA, Region 5	10/04/2023	01/17/2024	03/13/2024
US	INDIAN LUST R6	Leaking Underground Storage Tanks on Indian Land	EPA Region 6	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R7	Leaking Underground Storage Tanks on Indian Land	EPA Region 7	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R8	Leaking Underground Storage Tanks on Indian Land	EPA Region 8	10/25/2023	01/17/2024	03/13/2024
US	INDIAN LUST R9	Leaking Underground Storage Tanks on Indian Land	Environmental Protection Agency	10/25/2023	01/17/2024	03/13/2024
US	INDIAN ODI	Report on the Status of Open Dumps on Indian Lands	Environmental Protection Agency	12/31/1998	12/03/2007	01/24/2008
US	INDIAN RESERV	Indian Reservations	USGS	12/31/2014	07/14/2015	01/10/2017
US	INDIAN UST R1	Underground Storage Tanks on Indian Land	EPA, Region 1	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R10	Underground Storage Tanks on Indian Land	EPA Region 10	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R4	Underground Storage Tanks on Indian Land	EPA Region 4	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R5	Underground Storage Tanks on Indian Land	EPA Region 5	10/17/2023	01/17/2024	03/13/2024
US	INDIAN UST R6	Underground Storage Tanks on Indian Land	EPA Region 6	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R7	Underground Storage Tanks on Indian Land	EPA Region 7	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R8	Underground Storage Tanks on Indian Land	EPA Region 8	10/24/2023	01/17/2024	03/13/2024
US	INDIAN UST R9	Underground Storage Tanks on Indian Land	EPA Region 9	10/24/2023	01/17/2024	03/13/2024
US	INDIAN VCP R1	Voluntary Cleanup Priority Listing	EPA, Region 1	07/27/2015	09/29/2015	02/18/2016
US	INDIAN VCP R7	Voluntary Cleanup Priority Listing	EPA, Region 7	03/20/2008	04/22/2008	05/19/2008
US	LEAD SMELTER 1	Lead Smelter Sites	Environmental Protection Agency	05/22/2024	06/03/2024	06/24/2024
US	LEAD SMELTER 2	Lead Smelter Sites	American Journal of Public Health	04/05/2001	10/27/2010	12/02/2010
US	LIENS 2	CERCLA Lien Information	Environmental Protection Agency	05/22/2024	06/03/2024	06/26/2024
US	LUCIS	Land Use Control Information System	Department of the Navy	02/14/2024	02/16/2024	04/04/2024

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	MINES MRDS	Mineral Resources Data System	USGS	08/23/2022	11/22/2022	02/28/2023
US	MINES VIOLATIONS	MSHA Violation Assessment Data	DOL, Mine Safety & Health Admi	04/01/2024	04/04/2024	07/12/2024
US	MLTS	Material Licensing Tracking System	Nuclear Regulatory Commission	01/02/2024	01/16/2024	03/13/2024
US	NPL	National Priority List	EPA	05/22/2024	06/03/2024	06/26/2024
US	NPL LIENS	Federal Superfund Liens	EPA	10/15/1991	02/02/1994	03/30/1994
US	ODI	Open Dump Inventory	Environmental Protection Agency	06/30/1985	08/09/2004	09/17/2004
US	PADS	PCB Activity Database System	EPA	03/20/2023	04/04/2023	06/09/2023
US	PCB TRANSFORMER	PCB Transformer Registration Database	Environmental Protection Agency	09/13/2019	11/06/2019	02/10/2020
US	PCS	Permit Compliance System	EPA, Office of Water	12/16/2016	01/06/2017	03/10/2017
US	PCS ENF	Enforcement data	EPA	12/31/2014	02/05/2015	03/06/2015
US	PFAS ATSDR	PFAS Contamination Site Location Listing	Department of Health & Human Services	06/24/2020	03/17/2021	11/08/2022
US	PFAS ECHO	Facilities in Industries that May Be Handling PFAS Listing	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS ECHO FIRE TRAIN	Facilities in Industries that May Be Handling PFAS Listing	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS FEDERAL SITES	Federal Sites PFAS Information	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS NPDDES	Clean Water Act Discharge Monitoring Information	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS NPL	Superfund Sites with PFAS Detections Information	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS PROJECT	NORTHEASTERN UNIVERSITY PFAS PROJECT	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS PT 139 AIRPORT	All Certified Part 139 Airports PFAS Information Listing	Social Science Environmental Health Research	05/19/2023	04/05/2024	06/06/2024
US	PFAS RCRA MANIFEST	PFAS Transfers Identified In the RCRA Database Listing	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS TRIS	List of PFAS Added to the TRI	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS TSCA	PFAS Manufacture and Imports Information	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PFAS WQP	Ambient Environmental Sampling for PFAS	Environmental Protection Agency	07/01/2024	07/01/2024	07/12/2024
US	PRP	Potentially Responsible Parties	EPA	09/19/2023	10/03/2023	10/19/2023
US	Proposed NPL	Proposed National Priority List Sites	EPA	05/22/2024	06/03/2024	06/26/2024
US	RAATS	RCRA Administrative Action Tracking System	EPA	04/17/1995	07/03/1995	08/07/1995
US	RADINFO	Radiation Information Database	Environmental Protection Agency	07/01/2019	07/01/2019	09/23/2019
US	RCRA NonGen / NLR	RCRA - Non Generators / No Longer Regulated	Environmental Protection Agency	06/03/2024	06/07/2024	06/20/2024
US	RCRA-LQG	RCRA - Large Quantity Generators	Environmental Protection Agency	06/03/2024	06/07/2024	06/20/2024
US	RCRA-SQG	RCRA - Small Quantity Generators	Environmental Protection Agency	06/03/2024	06/07/2024	06/20/2024
US	RCRA-TSDF	RCRA - Treatment, Storage and Disposal	Environmental Protection Agency	06/03/2024	06/07/2024	06/20/2024
US	RCRA-VSQG	RCRA - Very Small Quantity Generators (Formerly Conditionall	Environmental Protection Agency	06/03/2024	06/07/2024	06/20/2024
US	RMP	Risk Management Plans	Environmental Protection Agency	04/01/2024	04/17/2024	07/12/2024
US	ROD	Records Of Decision	EPA	05/22/2024	06/03/2024	06/26/2024
US	SCRD DRYCLEANERS	State Coalition for Remediation of Drycleaners Listing	Environmental Protection Agency	07/30/2021	02/03/2023	02/10/2023
US	SEMS	Superfund Enterprise Management System	EPA	04/22/2024	05/01/2024	05/24/2024
US	SEMS-ARCHIVE	Superfund Enterprise Management System Archive	EPA	04/22/2024	05/01/2024	05/24/2024
US	SSTS	Section 7 Tracking Systems	EPA	07/11/2024	07/11/2024	07/12/2024
US	TRIS	Toxic Chemical Release Inventory System	EPA	12/31/2022	11/13/2023	02/07/2024
US	TSCA	Toxic Substances Control Act	EPA	12/31/2020	06/14/2022	03/24/2023
US	UMTRA	Uranium Mill Tailings Sites	Department of Energy	08/30/2019	11/15/2019	01/28/2020
US	US AIRS (AFS)	Aerometric Information Retrieval System Facility Subsystem (EPA	10/12/2016	10/26/2016	02/03/2017
US	US AIRS MINOR	Air Facility System Data	EPA	10/12/2016	10/26/2016	02/03/2017
US	US BROWNFIELDS	A Listing of Brownfields Sites	Environmental Protection Agency	03/11/2024	03/12/2024	05/10/2024
US	US CDL	Clandestine Drug Labs	Drug Enforcement Administration	12/31/2023	02/21/2024	04/04/2024
US	US ENG CONTROLS	Engineering Controls Sites List	Environmental Protection Agency	02/13/2024	02/21/2024	04/04/2024
US	US FIN ASSUR	Financial Assurance Information	Environmental Protection Agency	03/18/2024	03/19/2024	06/20/2024
US	US HIST CDL	National Clandestine Laboratory Register	Drug Enforcement Administration	12/31/2023	02/21/2024	04/04/2024

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

St	Acronym	Full Name	Government Agency	Gov Date	Arvl. Date	Active Date
US	US INST CONTROLS	Institutional Controls Sites List	Environmental Protection Agency	02/13/2024	02/21/2024	04/04/2024
US	US MINES	Mines Master Index File	Department of Labor, Mine Safety and Health A	02/05/2024	02/21/2024	04/04/2024
US	US MINES 2	Ferrous and Nonferrous Metal Mines Database Listing	USGS	01/07/2022	02/24/2023	05/17/2023
US	US MINES 3	Active Mines & Mineral Plants Database Listing	USGS	04/14/2011	06/08/2011	09/13/2011
US	UST FINDER	UST Finder Database	Environmental Protection Agency	06/08/2023	10/04/2023	01/18/2024
US	UST FINDER RELEASE	UST Finder Releases Database	Environmental Protection Agency	06/08/2023	10/31/2023	01/18/2024
US	UXO	Unexploded Ordnance Sites	Department of Defense	09/06/2023	09/13/2023	12/11/2023
CT	CT MANIFEST	Hazardous Waste Manifest Data	Department of Energy & Environmental Protection	02/05/2024	02/06/2024	04/25/2024
NJ	NJ MANIFEST	Manifest Information	Department of Environmental Protection	12/31/2018	04/10/2019	05/16/2019
NY	NY MANIFEST	Facility and Manifest Data	Department of Environmental Conservation	12/31/2019	11/30/2023	12/01/2023
PA	PA MANIFEST	Manifest Information	Department of Environmental Protection	06/30/2018	07/19/2019	09/10/2019
RI	RI MANIFEST	Manifest information	Department of Environmental Management	12/31/2020	11/30/2021	02/18/2022
WI	WI MANIFEST	Manifest Information	Department of Natural Resources	05/31/2018	06/19/2019	09/03/2019
US	AHA Hospitals	Sensitive Receptor: AHA Hospitals	American Hospital Association, Inc.			
US	Medical Centers	Sensitive Receptor: Medical Centers	Centers for Medicare & Medicaid Services			
US	Nursing Homes	Sensitive Receptor: Nursing Homes	National Institutes of Health			
US	Public Schools	Sensitive Receptor: Public Schools	National Center for Education Statistics			
US	Private Schools	Sensitive Receptor: Private Schools	National Center for Education Statistics			
IL	Daycare Centers	Sensitive Receptor: Homes & Centers Listing	Department of Children & Family Services			
US	Flood Zones	100-year and 500-year flood zones	Emergency Management Agency (FEMA)			
US	NWI	National Wetlands Inventory	U.S. Fish and Wildlife Service			
IL	State Wetlands	Wetland Inventory	Illinois State Geological Survey			
US	Topographic Map		U.S. Geological Survey			
US	Oil/Gas Pipelines		Endeavor Business Media			
US	Electric Power Transmission Line Data		Endeavor Business Media			

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK® - PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

IL 38 PEDESTRIAN BRIDGE
2082 ROOSEVELT RD
WHEATON, IL 60187

TARGET PROPERTY COORDINATES

Latitude (North):	41.857761 - 41° 51' 27.94"
Longitude (West):	88.137542 - 88° 8' 15.15"
Universal Tranverse Mercator:	Zone 16
UTM X (Meters):	405578.7
UTM Y (Meters):	4634396.0
Elevation:	717 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map:	24266853 NAPERVILLE, IL
Version Date:	2021
Southeast Map:	24266903 WHEATON, IL
Version Date:	2021

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

Assessment of the impact of contaminant migration generally has two principle investigative components:

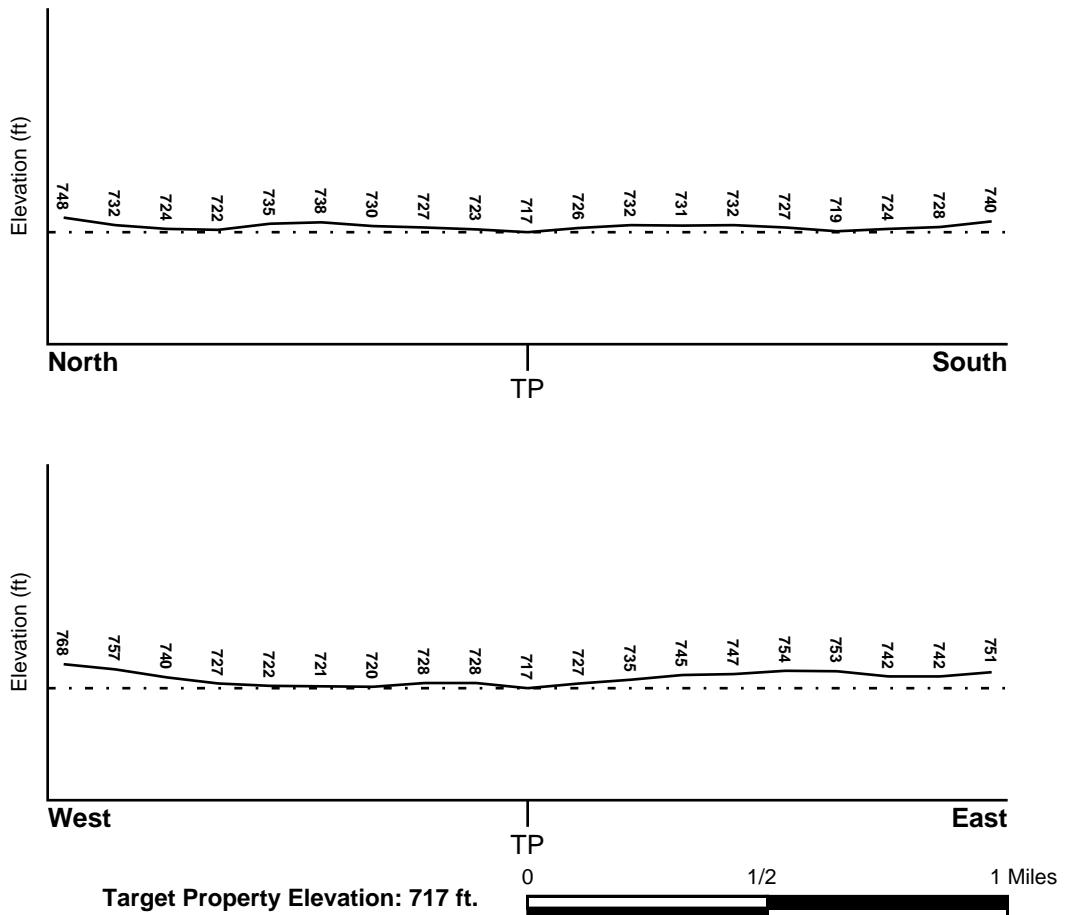
1. Groundwater flow direction, and
2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION

Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).


TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General WNW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

<u>Flood Plain Panel at Target Property</u>	<u>FEMA Source Type</u>
1702210005B	FEMA Q3 Flood data
<u>Additional Panels in search area:</u>	<u>FEMA Source Type</u>
1701970025B	FEMA Q3 Flood data
1702230001C	FEMA Q3 Flood data
1701970040B	FEMA Q3 Flood data
1701970035B	FEMA Q3 Flood data

NATIONAL WETLAND INVENTORY

<u>NWI Quad at Target Property</u> NAPERVILLE	NWI Electronic <u>Data Coverage</u> YES - refer to the Overview Map and Detail Map
--	--

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Site-Specific Hydrogeological Data*:

Search Radius: 1.25 miles
Status: Not found

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

<u>MAP ID</u>	<u>LOCATION FROM TP</u>	<u>GENERAL DIRECTION GROUNDWATER FLOW</u>
Not Reported		

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

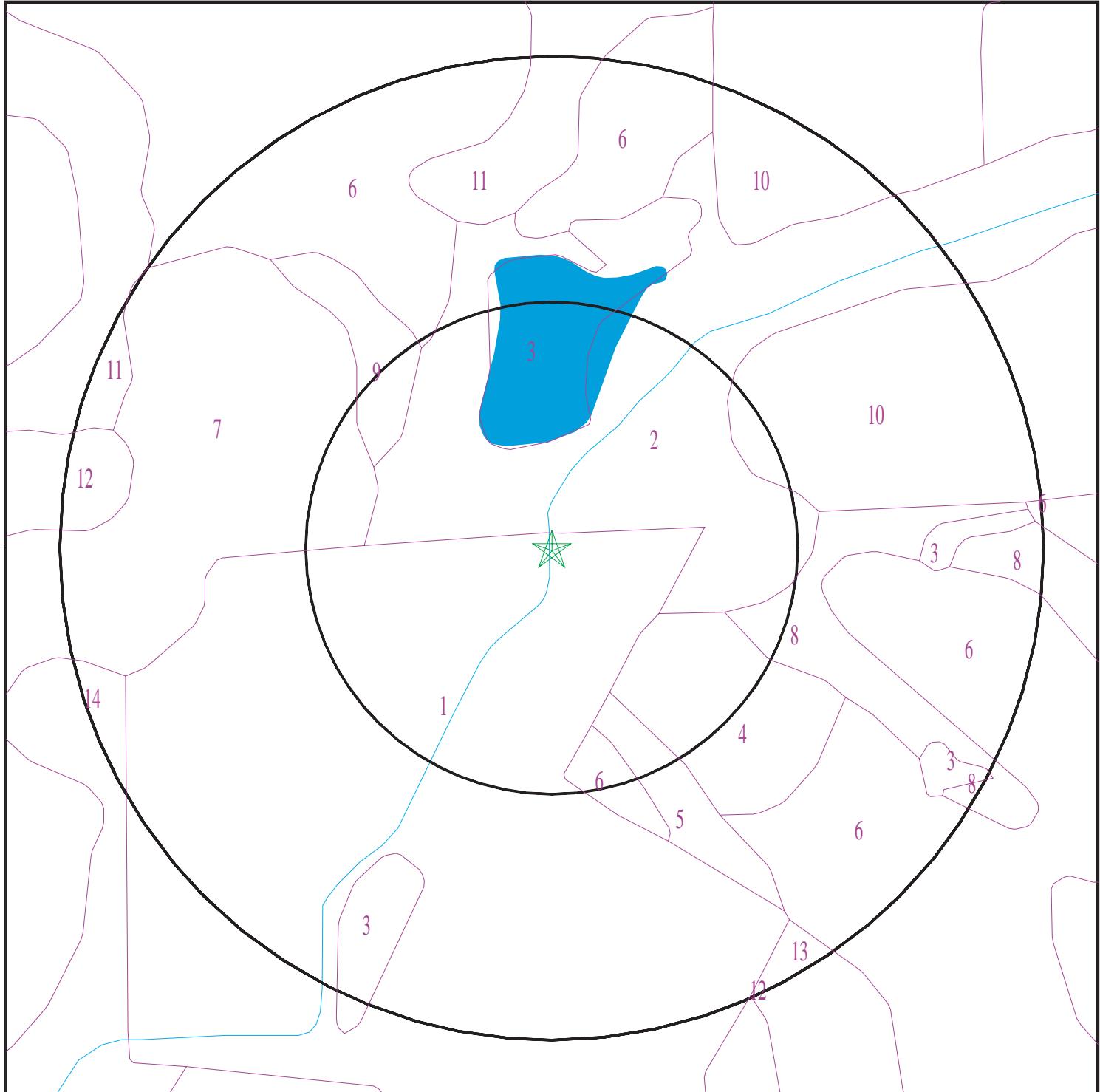
GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT


Era: Paleozoic
System: Silurian
Series: Middle Silurian (Niagoaran)
Code: S2 *(decoded above as Era, System & Series)*

GEOLOGIC AGE IDENTIFICATION

Category: Stratified Sequence

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

SSURGO SOIL MAP - 7715033.2s

★ Target Property

~ SSURGO Soil

~ Water

0 1/16 1/8 1/4 Miles

SITE NAME: IL 38 Pedestrian Bridge
ADDRESS: 2082 Roosevelt Rd
Wheaton IL 60187
LAT/LONG: 41.857761 / 88.137542

CLIENT: V3 Companies of IL, LTD
CONTACT: Jonathan Shuptar
INQUIRY #: 7715033.2s
DATE: July 23, 2024 11:41 am

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. The following information is based on Soil Conservation Service SSURGO data.

Soil Map ID: 1

Soil Component Name: Orthents, clayey

Soil Surface Texture: silty clay

Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class: Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 84 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	0 inches	5 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 0.42 Min: 0.14	Max: 8.4 Min: 6.1	
2	5 inches	59 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 0.42 Min: 0.14	Max: 8.4 Min: 6.1	

Soil Map ID: 2

Soil Component Name: Sawmill

Soil Surface Texture: silty clay loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.

Soil Drainage Class: Poorly drained

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 15 inches

Soil Layer Information								
Layer	Boundary		Soil Texture Class	Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
	Upper	Lower		AASHTO Group	Unified Soil			
1	0 inches	29 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	
2	29 inches	48 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	
3	48 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	

Soil Map ID: 3

Soil Component Name: Water

Soil Surface Texture: silty clay loam

Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.

Soil Drainage Class:

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: Not Reported

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 0 inches

No Layer Information available.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 4

Soil Component Name: Grays
 Soil Surface Texture: silt loam
 Hydrologic Group: Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.
 Soil Drainage Class: Moderately well drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 84 inches

Soil Layer Information								
	Boundary			Classification			Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 42.34 Min: 4.23	Max: 8.4 Min: 7.4	
2	7 inches	11 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 42.34 Min: 4.23	Max: 8.4 Min: 7.4	
3	11 inches	33 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 42.34 Min: 4.23	Max: 8.4 Min: 7.4	
4	33 inches	42 inches	loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 42.34 Min: 4.23	Max: 8.4 Min: 7.4	
5	42 inches	59 inches	stratified loamy sand to silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	COARSE-GRAINED SOILS, Sands, Sands with fines, Clayey sand.	Max: 42.34 Min: 4.23	Max: 8.4 Min: 7.4	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 5

Soil Component Name: Chenoa
 Soil Surface Texture: silty clay loam
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Somewhat poorly drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 46 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	0 inches	11 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
2	11 inches	31 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
3	31 inches	35 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
4	35 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 6

Soil Component Name: Markham
 Soil Surface Texture: silty clay loam
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Moderately well drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 76 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	20 inches	31 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
2	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
3	7 inches	20 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
4	31 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 7

Soil Component Name: Ozaukee
 Soil Surface Texture: silty clay loam
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Moderately well drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 84 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	20 inches	38 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
2	3 inches	9 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
3	0 inches	3 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
4	9 inches	20 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	
5	38 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.9	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 8

Soil Component Name: Elliott
 Soil Surface Texture: silty clay
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Somewhat poorly drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 41 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	11 inches	16 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
2	5 inches	11 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
3	0 inches	5 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
4	16 inches	40 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	
5	40 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 9

Soil Component Name: Ozaukee
 Soil Surface Texture: silty clay loam
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Moderately well drained
 Hydric Status: Not hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 66 inches

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	5 inches	20 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 6.1	
2	20 inches	27 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 6.1	
3	27 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 6.1	
4	0 inches	5 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 6.1	

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Map ID: 10

Soil Component Name: Markham
Soil Surface Texture: silt loam
Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class: Moderately well drained
Hydric Status: Partially hydric
Corrosion Potential - Uncoated Steel: Moderate
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 15 inches

Soil Layer Information							
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil		
1	0 inches	7 inches	silt loam	Not reported	Not reported	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4
2	7 inches	31 inches		Not reported	Not reported	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4
3	31 inches	59 inches		Not reported	Not reported	Max: 1.41 Min: 0.42	Max: 8.4 Min: 7.4

Soil Map ID: 11

Soil Component Name: Ashkum
Soil Surface Texture: silty clay loam
Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
Soil Drainage Class: Poorly drained
Hydric Status: All hydric
Corrosion Potential - Uncoated Steel: High
Depth to Bedrock Min: > 0 inches
Depth to Watertable Min: > 15 inches

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	53 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 7.8 Min: 6.6	
2	0 inches	11 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 7.8 Min: 6.6	
3	11 inches	29 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 7.8 Min: 6.6	
4	29 inches	53 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 7.8 Min: 6.6	

Soil Map ID: 12

Soil Component Name: Peotone
 Soil Surface Texture: silty clay loam
 Hydrologic Group: Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.
 Soil Drainage Class: Very poorly drained
 Hydric Status: All hydric
 Corrosion Potential - Uncoated Steel: High
 Depth to Bedrock Min: > 0 inches
 Depth to Watertable Min: > 15 inches

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	0 inches	12 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 8.4 Min: 6.6	
2	12 inches	50 inches	silty clay	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 8.4 Min: 6.6	
3	50 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 4.23 Min: 1.41	Max: 8.4 Min: 6.6	

Soil Map ID: 13

Soil Component Name:

Markham

Soil Surface Texture:

silty clay loam

Hydrologic Group:

Class C - Slow infiltration rates. Soils with layers impeding downward movement of water, or soils with moderately fine or fine textures.

Soil Drainage Class:

Moderately well drained

Hydric Status: Not hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 69 inches

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	7 inches	20 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 5.6	
2	20 inches	29 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 5.6	
3	29 inches	59 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 5.6	
4	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 7.3 Min: 5.6	

Soil Map ID: 14

Soil Component Name: Sawmill

Soil Surface Texture: silty clay loam

Hydrologic Group: Class D - Very slow infiltration rates. Soils are clayey, have a high water table, or are shallow to an impervious layer.

Soil Drainage Class: Poorly drained

Hydric Status: All hydric

Corrosion Potential - Uncoated Steel: High

Depth to Bedrock Min: > 0 inches

Depth to Watertable Min: > 7 inches

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

Soil Layer Information								
	Boundary			Classification		Saturated hydraulic conductivity micro m/sec	Soil Reaction (pH)	
Layer	Upper	Lower	Soil Texture Class	AASHTO Group	Unified Soil			
1	0 inches	27 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	
2	27 inches	42 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	
3	42 inches	59 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Clayey Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 14.11 Min: 4.23	Max: 8.4 Min: 6.6	

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

<u>DATABASE</u>	<u>SEARCH DISTANCE (miles)</u>
Federal USGS	1.000
Federal FRDS PWS	Nearest PWS within 1 mile
State Database	1.000

FEDERAL USGS WELL INFORMATION

MAP ID	WELL ID	LOCATION
		FROM TP
D13	USGS40000299380	1/4 - 1/2 Mile ENE
N53	USGS40000299409	1/2 - 1 Mile NNE
Q64	USGS40000299383	1/2 - 1 Mile West

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
5	IL0437000	1/8 - 1/4 Mile ENE

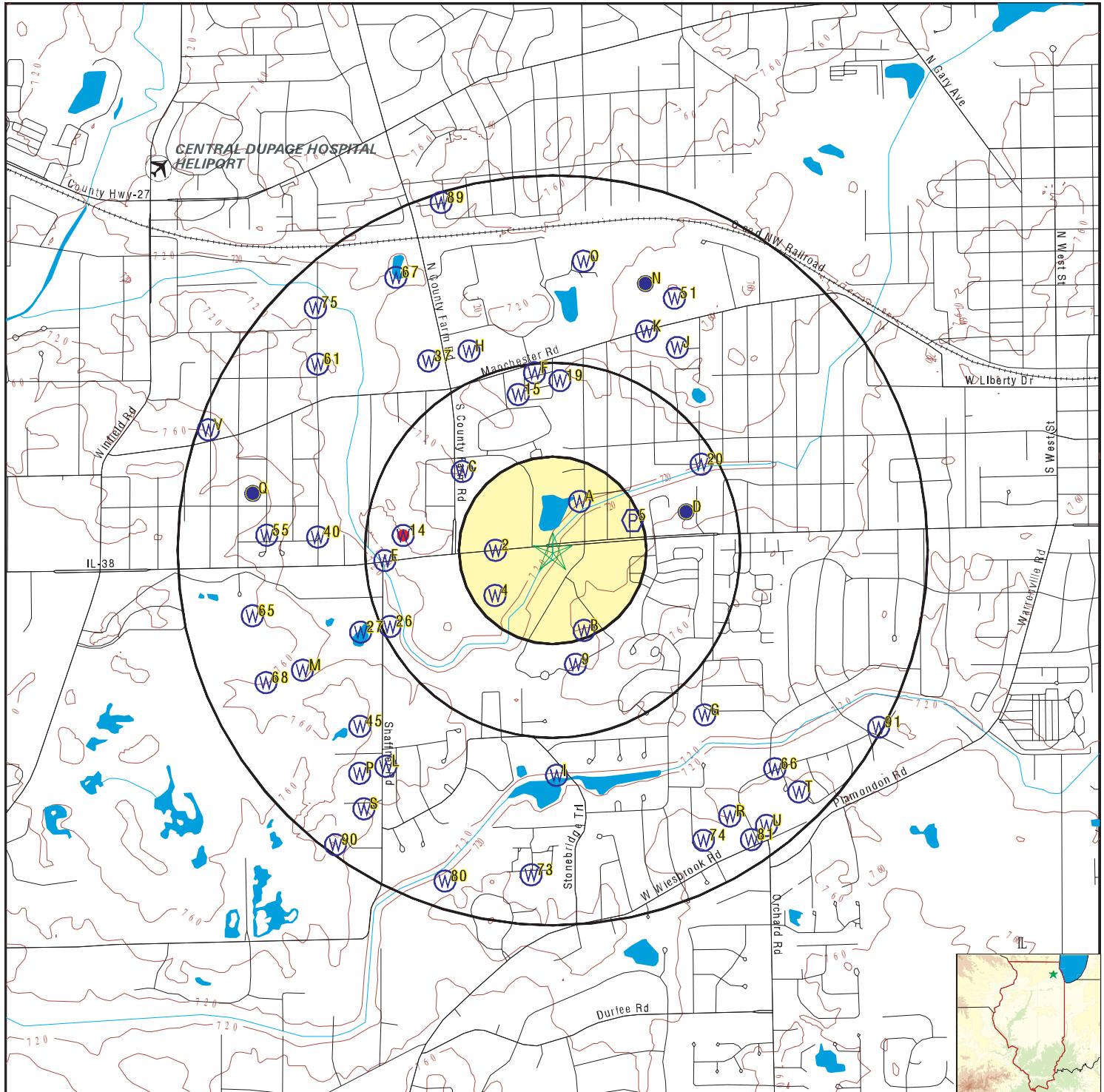
Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
A1	ILSG40000076204	1/8 - 1/4 Mile NNE
2	ILSG40000086235	1/8 - 1/4 Mile West
A3	ILSG40000086259	1/8 - 1/4 Mile NNE
4	ILSG40000075269	1/8 - 1/4 Mile SW
B6	ILSG40000077027	1/8 - 1/4 Mile SSE
B7	ILSG40000077028	1/8 - 1/4 Mile SSE
C8	ILSG40000075613	1/4 - 1/2 Mile NW
9	ILSG40000086316	1/4 - 1/2 Mile SSE
C10	ILSG40000081343	1/4 - 1/2 Mile NW
D11	ILEPAC700000510	1/4 - 1/2 Mile ENE
D12	ILSG40000081342	1/4 - 1/2 Mile ENE
14	ILSG40000086272	1/4 - 1/2 Mile West
15	ILSG40000075585	1/4 - 1/2 Mile NNW
E16	ILSG40000085764	1/4 - 1/2 Mile West
E17	ILSG40000085761	1/4 - 1/2 Mile West
E18	ILSG40000085760	1/4 - 1/2 Mile West
19	ILSG40000075291	1/4 - 1/2 Mile North
20	ILSG40000082561	1/4 - 1/2 Mile ENE
F21	ILPW18837	1/4 - 1/2 Mile North
F22	ILPW18838	1/4 - 1/2 Mile North
F23	ILPW18840	1/4 - 1/2 Mile North
F24	ILPW18841	1/4 - 1/2 Mile North
F25	ILPW18839	1/4 - 1/2 Mile North
26	ILPW17705	1/4 - 1/2 Mile WSW
27	ILSG40000076975	1/2 - 1 Mile WSW
G28	ILSG40000086229	1/2 - 1 Mile SE
H29	ILPW18843	1/2 - 1 Mile NNW
H30	ILPW18842	1/2 - 1 Mile NNW
G31	ILSG40000086289	1/2 - 1 Mile SE
I32	ILPW18844	1/2 - 1 Mile South
I33	ILPW18845	1/2 - 1 Mile South
I34	ILPW18848	1/2 - 1 Mile South
I35	ILPW18846	1/2 - 1 Mile South
I36	ILPW18847	1/2 - 1 Mile South
37	ILSG40000075312	1/2 - 1 Mile NNW
G38	ILSG40000086288	1/2 - 1 Mile SE
G39	ILSG40000086287	1/2 - 1 Mile SE
40	ILPW17281	1/2 - 1 Mile West
J41	ILSG40000077025	1/2 - 1 Mile NNE
J42	ILSG40000077026	1/2 - 1 Mile NNE
K43	ILSG40000086248	1/2 - 1 Mile NNE
K44	ILSG40000086249	1/2 - 1 Mile NNE
45	ILSG40000081223	1/2 - 1 Mile SW

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

STATE DATABASE WELL INFORMATION


MAP ID	WELL ID	LOCATION FROM TP
L46	ILPW17704	1/2 - 1 Mile SW
M47	ILPW17708	1/2 - 1 Mile WSW
M48	ILPW17709	1/2 - 1 Mile WSW
M49	ILPW17707	1/2 - 1 Mile WSW
N50	ILSG40000084053	1/2 - 1 Mile NNE
51	ILSG40000086317	1/2 - 1 Mile NNE
L52	ILSG40000086228	1/2 - 1 Mile SW
N54	ILEPAC700000530	1/2 - 1 Mile NNE
55	ILEPAC700000503	1/2 - 1 Mile West
O56	ILSG40000078521	1/2 - 1 Mile North
O57	ILSG40000078590	1/2 - 1 Mile North
O58	ILSG40000076666	1/2 - 1 Mile North
P59	ILSG40000086090	1/2 - 1 Mile SW
P60	ILSG40000085924	1/2 - 1 Mile SW
61	ILPW17282	1/2 - 1 Mile NW
Q62	ILSG40000084042	1/2 - 1 Mile West
Q63	ILSG40000075245	1/2 - 1 Mile West
65	ILSG40000084666	1/2 - 1 Mile WSW
66	ILSG40000080399	1/2 - 1 Mile SE
67	ILSG40000079337	1/2 - 1 Mile NNW
68	ILSG40000083794	1/2 - 1 Mile WSW
R69	ILSG40000076205	1/2 - 1 Mile SE
S70	ILSG40000081225	1/2 - 1 Mile SW
R71	ILSG40000082313	1/2 - 1 Mile SSE
S72	ILSG40000080276	1/2 - 1 Mile SW
73	ILSG40000075293	1/2 - 1 Mile South
74	ILSG40000077033	1/2 - 1 Mile SSE
75	ILSG40000082554	1/2 - 1 Mile NW
T76	ILSG40000077034	1/2 - 1 Mile SE
T77	ILSG40000080397	1/2 - 1 Mile SE
T78	ILSG40000080398	1/2 - 1 Mile SE
U79	ILSG40000077031	1/2 - 1 Mile SE
80	ILSG40000077029	1/2 - 1 Mile SSW
81	ILSG40000077030	1/2 - 1 Mile SE
U82	ILSG40000081838	1/2 - 1 Mile SE
V83	ILPW17277	1/2 - 1 Mile WNW
V84	ILPW17280	1/2 - 1 Mile WNW
V85	ILPW17275	1/2 - 1 Mile WNW
V86	ILPW17276	1/2 - 1 Mile WNW
V87	ILPW17279	1/2 - 1 Mile WNW
V88	ILPW17278	1/2 - 1 Mile WNW
89	ILSG40000076665	1/2 - 1 Mile NNW
90	ILSG40000079320	1/2 - 1 Mile SW
91	ILSG40000081344	1/2 - 1 Mile ESE

OTHER STATE DATABASE INFORMATION

STATE OIL/GAS WELL INFORMATION

MAP ID	WELL ID	LOCATION FROM TP
1	ILOG30000057602	1/4 - 1/2 Mile West

PHYSICAL SETTING SOURCE MAP - 7715033.2s

- County Boundary
- Major Roads
- Contour Lines
- Airports
- Earthquake epicenter, Richter 5 or greater
- Water Wells
- Public Water Supply Wells
- Cluster of Multiple Icons

- ↑ Groundwater Flow Direction
- GI Indeterminate Groundwater Flow at Location
- GV Groundwater Flow Varies at Location
- HD Closest Hydrogeological Data
- Oil, gas or related wells

SITE NAME: IL 38 Pedestrian Bridge
ADDRESS: 2082 Roosevelt Rd
Wheaton IL 60187
LAT/LONG: 41.857761 / 88.137542

CLIENT: V3 Companies of IL, LTD
CONTACT: Jonathan Shpter
INQUIRY #: 7715033.2s
DATE: July 23, 2024 11:41 am

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation	Database	EDR ID Number
--	----------	---------------

1 West 1/4 - 1/2 Mile	Click here for full text details	OIL_GAS	ILOG30000057602
-----------------------------	--	---------	-----------------

A1 NNE 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000076204
---------------------------------------	--	----------	-----------------

2 West 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086235
---------------------------------------	--	----------	-----------------

A3 NNE 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086259
---------------------------------------	--	----------	-----------------

4 SW 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000075269
-------------------------------------	--	----------	-----------------

5 ENE 1/8 - 1/4 Mile Higher	Click here for full text details	FRDS PWS	IL0437000
--------------------------------------	--	----------	-----------

B6 SSE 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077027
---------------------------------------	--	----------	-----------------

B7 SSE 1/8 - 1/4 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077028
---------------------------------------	--	----------	-----------------

C8 NW 1/4 - 1/2 Mile Higher	Click here for full text details	IL WELLS	ILSG40000075613
--------------------------------------	--	----------	-----------------

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID	Direction	Distance	Elevation	Database	EDR ID Number
9 SSE 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILSG40000086316
C10 NW 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILSG40000081343
D11 ENE 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILEPAC700000510
D12 ENE 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILSG40000081342
D13 ENE 1/4 - 1/2 Mile Higher		Click here for full text details		FED USGS	USGS40000299380
14 West 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILSG40000086272
15 NNW 1/4 - 1/2 Mile Higher		Click here for full text details		IL WELLS	ILSG40000075585
E16 West 1/4 - 1/2 Mile Lower		Click here for full text details		IL WELLS	ILSG40000085764
E17 West 1/4 - 1/2 Mile Lower		Click here for full text details		IL WELLS	ILSG40000085761

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation	Database	EDR ID Number
E18 West Click here for full text details 1/4 - 1/2 Mile Lower	IL WELLS	ILSG40000085760
19 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILSG40000075291
20 ENE Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILSG40000082561
F21 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW18837
F22 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW18838
F23 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW18840
F24 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW18841
F25 North Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW18839
26 WSW Click here for full text details 1/4 - 1/2 Mile Higher	IL WELLS	ILPW17705

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
27 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000076975
G28 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086229
H29 NNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18843
H30 NNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18842
G31 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086289
I32 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18844
I33 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18845
I34 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18848
I35 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18846

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
I36 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW18847
37 NNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000075312
G38 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086288
G39 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086287
40 West 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17281
J41 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077025
J42 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077026
K43 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086248
K44 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086249

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation	Click here for full text details	Database	EDR ID Number
45 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000081223
L46 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17704
M47 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17708
M48 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17709
M49 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17707
N50 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000084053
51 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086317
L52 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086228
N53 NNE 1/2 - 1 Mile Higher	Click here for full text details	FED USGS	USGS40000299409

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
N54 NNE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILEPAC700000530
55 West 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILEPAC700000503
O56 North 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000078521
O57 North 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000078590
O58 North 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000076666
P59 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000086090
P60 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000085924
61 NW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17282
Q62 West 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000084042

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
Q63 West 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000075245
Q64 West 1/2 - 1 Mile Higher	Click here for full text details	FED USGS	USGS40000299383
65 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000084666
66 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000080399
67 NNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000079337
68 WSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000083794
R69 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000076205
S70 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000081225
R71 SSE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000082313

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation		Database	EDR ID Number
S72 SW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000080276
73 South 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000075293
74 SSE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077033
75 NW 1/2 - 1 Mile Lower	Click here for full text details	IL WELLS	ILSG40000082554
T76 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077034
T77 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000080397
T78 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000080398
U79 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077031
80 SSW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077029

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance Elevation	Database	EDR ID Number
--	----------	---------------

81 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000077030
------------------------------------	--	----------	-----------------

U82 SE 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000081838
-------------------------------------	--	----------	-----------------

V83 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17277
--------------------------------------	--	----------	-----------

V84 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17280
--------------------------------------	--	----------	-----------

V85 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17275
--------------------------------------	--	----------	-----------

V86 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17276
--------------------------------------	--	----------	-----------

V87 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17279
--------------------------------------	--	----------	-----------

V88 WNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILPW17278
--------------------------------------	--	----------	-----------

89 NNW 1/2 - 1 Mile Higher	Click here for full text details	IL WELLS	ILSG40000076665
-------------------------------------	--	----------	-----------------

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID
Direction
Distance
Elevation

Database EDR ID Number

90
SW [Click here for full text details](#) IL WELLS ILSG40000079320
1/2 - 1 Mile
Higher

91
ESE [Click here for full text details](#) IL WELLS ILSG40000081344
1/2 - 1 Mile
Higher

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS

RADON

AREA RADON INFORMATION

State Database: IL Radon

Radon Test Results

Zipcode	Result
60187	0.8
60187	2.4
60187	2
60187	0.3
60187	1.3
60187	18.8
60187	28.9
60187	1
60187	8.6
60187	4.4
60187	2
60187	0.7
60187	2
60187	2.2
60187	9.4
60187	6.8
60187	5.7
60187	3.9
60187	4.2
60187	2
60187	12.3
60187	6.6
60187	3
60187	0.4
60187	0.5
60187	7.3
60187	20
60187	7.7
60187	4
60187	3.9
60187	4.3
60187	2.8
60187	4.5
60187	1
60187	5.6
60187	10.1
60187	5.9
60187	2.7
60187	4.1
60187	9.9
60187	0.8
60187	3.9
60187	4.1
60187	1.3
60187	5.6
60187	0.7
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

	1.5
60187	2
60187	4.2
60187	3.6
60187	2.2
60187	2.3
60187	11.4
60187	2.5
60187	2.9
60187	2.6
60187	1.4
60187	4
60187	8.2
60187	5.2
60187	1.2
60187	7
60187	3.2
60187	3
60187	7.2
60187	1.7
60187	2.3
60187	5.3
60187	5.5
60187	1.5
60187	4.6
60187	1
60187	3.9
60187	0.1
60187	5.4
60187	3.5
60187	7.7
60187	4
60187	3.3
60187	3.1
60187	1.2
60187	8.2
60187	-0.9
60187	2.6
60187	6.9
60187	1.2
60187	10.7
60187	18.2
60187	22.7
60187	2.7
60187	1.6
60187	0.8
60187	5.3
60187	5.1
60187	2.2
60187	1.7
60187	1.2
60187	2.4
60187	1.3
60187	4.1
60187	1.3
60187	4.7
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

	0.7
60187	2.7
60187	1.2
60187	2.4
60187	7.1
60187	13.4
60187	1.7
60187	3.2
60187	1.1
60187	1.3
60187	18.1
60187	3.1
60187	9.7
60187	19.9
60187	19
60187	2.3
60187	0.9
60187	1
60187	8.2
60187	0.6
60187	4.1
60187	3
60187	4.1
60187	0.6
60187	2.3
60187	2.9
60187	3.1
60187	1
60187	8.8
60187	3.3
60187	2.6
60187	5.7
60187	18.3
60187	0.4
60187	3.2
60187	0.8
60187	3.1
60187	2.4
60187	11.2
60187	19.3
60187	4.4
60187	1.1
60187	1.6
60187	0.6
60187	5.5
60187	0.4
60187	1.1
60187	2.6
60187	0.9
60187	3.2
60187	3.9
60187	5.5
60187	3.5
60187	0.5
60187	5.4
60187	3
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

	0.9
60187	1.3
60187	9.1
60187	2.8
60187	1.8
60187	4.2
60187	1.8
60187	4.6
60187	11.3
60187	1.9
60187	1.8
60187	5.5
60187	0.8
60187	1.9
60187	9.7
60187	3.6
60187	2.1
60187	0.8
60187	4.9
60187	3
60187	5
60187	5.5
60187	3
60187	12
60187	4
60187	3.7
60187	3.3
60187	1.3
60187	1.5
60187	2.4
60187	1.7
60187	2.3
60187	1
60187	1.4
60187	4.3
60187	0.4
60187	8.2
60187	0.6
60187	3.7
60187	0.9
60187	4
60187	0.8
60187	1.7
60187	2.4
60187	3.5
60187	1.5
60187	3.9
60187	13.8
60187	2.9
60187	2.1
60187	1.1
60187	3
60187	3.2
60187	1
60187	1.2
60187	7.4
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

	5.3
60187	2.5
60187	3
60187	4.4
60187	18.8
60187	6.3
60187	2.4
60187	1.3
60187	1.3
60187	10.2
60187	0.9
60187	2.5
60187	1
60187	2.9
60187	14.1
60187	6.7
60187	0.4
60187	38.1
60187	1.7
60187	2.1
60187	12
60187	2.6
60187	2.4
60187	1
60187	0.7
60187	11.1
60187	1.4
60187	0.6
60187	5.3
60187	7.3
60187	3.5
60187	0.2
60187	1.9
60187	7.6
60187	2.5
60187	0.5
60187	1.7
60187	2.1
60187	0.3
60187	8.4
60187	1.3
60187	30.3
60187	24.1
60187	12.7
60187	0.6
60187	11.4
60187	1.6
60187	5.8
60187	3.3
60187	0.8
60187	3.9
60187	0.4
60187	2.3
60187	2.2
60187	2.2
60187	0.8
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

	0.1
60187	5.7
60187	4.1
60187	4.5
60187	2.6
60187	3.5
60187	1.9
60187	1.9
60187	1.6
60187	2.7
60187	5.8
60187	6.5
60187	0.8
60187	2.8
60187	4.7
60187	3.3
60187	6.1
60187	2.1
60187	2.2
60187	0.6
60187	3.4
60187	0.7
60187	4.6
60187	1.3
60187	6.5
60187	4.8
60187	1
60187	4
60187	3.6
60187	3.6
60187	0.3
60187	0.6
60187	5.9
60187	3
60187	3
60187	2.2
60187	3.2
60187	19.7
60187	4.4
60187	6.8
60187	3.9
60187	15.9
60187	3.7
60187	0.8
60187	8
60187	1
60187	3.3
60187	2
60187	5.1
60187	4.1
60187	0.8
60187	6.5
60187	2.7
60187	0.4
60187	0.5
60187	10.4
60187	

GEOCHECK® - PHYSICAL SETTING SOURCE MAP FINDINGS RADON

AREA RADON INFORMATION

60187	0.7
60187	2.6
60187	1.7
60187	1.5
60187	2.2
60187	0.7
60187	3.2
60187	0.7
60187	0.6
60187	1.7
60187	11.2
60187	0.4
60187	3
60187	7.8
60187	6.8
60187	8.9
60187	3.3
60187	5.3
60187	2.2
60187	14.5
60187	10.7
60187	2.2
60187	1.9
60187	4.6
60187	0.8
60187	7.7
60187	0.9
60187	1.8
60187	6.9
60187	1.3
60187	1.2
60187	3.1
60187	4.3
60187	2.7
60187	1.5
60187	1.9
60187	2.2
60187	6.4
60187	0.8
60187	2.7
60187	3.5
60187	0
60187	2.8

Federal EPA Radon Zone for DUPAGE County: 2

Note: Zone 1 indoor average level > 4 pCi/L.

: Zone 2 indoor average level >= 2 pCi/L and <= 4 pCi/L.

: Zone 3 indoor average level < 2 pCi/L.

Federal Area Radon Information for Zip Code: 60187

Number of sites tested: 7

Area	Average Activity	% <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L
Living Area - 1st Floor	Not Reported	Not Reported	Not Reported	Not Reported
Living Area - 2nd Floor	Not Reported	Not Reported	Not Reported	Not Reported
Basement	2.457 pCi/L	86%	14%	0%

PHYSICAL SETTING SOURCE RECORDS SEARCHED

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5' Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

Source: U.S. Geological Survey

HYDROLOGIC INFORMATION

Flood Zone Data: This data was obtained from the Federal Emergency Management Agency (FEMA). It depicts 100-year and 500-year flood zones as defined by FEMA. It includes the National Flood Hazard Layer (NFHL) which incorporates Flood Insurance Rate Map (FIRM) data and Q3 data from FEMA in areas not covered by NFHL.

Source: FEMA

Telephone: 877-336-2627

Date of Government Version: 2003, 2015

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002, 2005, 2010 and 2015 from the U.S. Fish and Wildlife Service.

State Wetlands Data: Wetland Inventory

Source: Illinois State Geological Survey

Telephone: 217-333-4747

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Service (NRCS)

Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Service, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

OTHER STATE DATABASE INFORMATION

Oil and Gas Wells Listing

Source: Illinois State Geological Survey

Telephone: 217-333-5109

Oil and gas wells location points from the Illinois State Geological Survey database.

Water Well Records

Source: Illinois Geological Survey

Telephone: 217-333-4747

Illinois Private Well Database and PICS (Public, Industrial, Commercial Survey)

Source: Illinois State Water Survey

Telephone: 217-333-9043

Water Well Location Information

Source: Illinois Environmental Protection Agency

Telephone: 217-782-0810

RADON

State Database: IL Radon

Source: Department of Nuclear Safety

Telephone: 217-785-9958

County Radon Results

Area Radon Information

Source: USGS

Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA

Telephone: 703-356-4020

Sections 307 & 309 of IRRA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

OTHER

Airport Landing Facilities: Private and public use landing facilities
Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater
Source: Department of Commerce, National Oceanic and Atmospheric Administration

Earthquake Fault Lines: The fault lines displayed on EDR's Topographic map are digitized quaternary faultlines, prepared in 1975 by the United States Geological Survey

STREET AND ADDRESS INFORMATION

© 2015 TomTom North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

www.nstengr.com

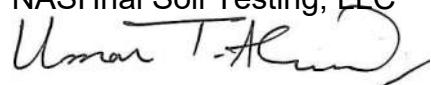
**GEOTECHNICAL EXPLORATION/FASIBILITY STUDY REPORT FOR
Pedestrian Bridge at Roosevelt Road Over Winfield Creek
Wheaton, IL**

PROJECT NUMBER 2024-1301-04G

Prepared For

**Mr. Jason Holy
V3 Companies
7325 Janes Avenue
Woodridge, IL 60517**

**Mr. Jason Holy
V3 Companies
7325 Janes Avenue
Woodridge, IL 60517**


Date: 6/16/2024

**RE: Geotechnical Exploration/Feasibility Study Report for
Pedestrian Bridge South of Roosevelt Road over Winfield Creek
Wheaton, IL**

Dear Mr. Holy:

Following your written authorization on May 22, 2024, of our proposal dated February 2, 2024; we have completed this geotechnical exploration. Enclosed you will find the results of our field exploration, related laboratory testing, and geotechnical report. This report is the instrument of service defined in our proposal; we are also submitting electronic copies.

We have enjoyed working with you on this phase of the project. Should you have any questions or if we can be of further assistance, please do not hesitate to contact us.

Sincerely,
NASHnal Soil Testing, LLC

Umar T. Ahmad, PE
Registered Professional Engineer, Illinois
Registration # 062-055148

Expires 11/30/2025

**GEOTECHNICAL EXPLORATION/FASIBILITY STUDY REPORT FOR
Pedestrian Bridge at South of Roosevelt Road Over Winfield Creek
Wheaton, IL**

PROJECT NUMBER 2024-1301-04G

<i>INTRODUCTION</i>	1
<i>SCOPE OF SERVICES</i>	1
<i>FIELD EXPLORATION PROCEDURES</i>	2
<i>LABORATORY TESTING AND CLASSIFICATION</i>	2
<i>SITE CONDITIONS</i>	3
Topography/Surface Features	3
Soil Conditions	3
Groundwater Conditions	4
<i>REVIEW AND RECOMMENDATIONS</i>	5
Discussion	5
Site Preparation	5
Foundation Support	6
<i>CONSTRUCTION CONSIDERATIONS</i>	8
Groundwater	8
Equipment Selection/Soil Disturbance	8
Winter Construction	8
Construction Safety	9
Field Observation and Testing	9
<i>GENERAL QUALIFICATIONS</i>	9
<i>STANDARD OF CARE</i>	10
<i>APPENDIX</i>	11

INTRODUCTION

It is our understanding that Village of Wheaton is planning to build a pedestrian bridge to cross the Winfield creek on south side of the Roosevelt Rd. in Wheaton (about 1400 feet east of County Farm Road and on the south side of the existing roadway bridge).

At the time of our initial site visit, the area next to the existing bridge over the Winfield Creek which is proposed for walking bridge, was covered with grass, heavy brush and mature trees. We understand that the Village of Wheaton is planning to build a more traditional walking bridge structure for the ease and safety of the general public crossing the creek on foot.

The topography of the site was observed to be relatively flat on both sides but sloping towards the creek bed at both banks with surface elevations ranging from 720 to 721 between our borings. Elevation was assigned based on GPS coordinates provided by the client and Google Earth. We strongly recommend that your project surveyor tie these elevations to National Geodetic Vertical Datum.

To evaluate the subsurface soil profile for the client requested to drill two (2) soil borings to a depth of 40 feet BEG.

Based upon our findings in this subsurface investigation, we believe that there are no major limiting geotechnical concerns present in the profile for the new bridge construction at B-1, however, buried topsoil was encountered up to 6.0 feet BEG at B-2. Careful evaluation of the soils at the bottom of the open trench will be required during the construction.

SCOPE OF SERVICES

The purpose of this report is to describe the soil and groundwater conditions encountered in our geotechnical exploration, review and evaluate these conditions with respect to the proposed project and present our recommendations for feasible methods for subgrade support and earthwork design and construction. Our scope of services for this project, as outlined in our proposal, is limited to the following elements.

1. Exploration of the subsurface soil by drilling and sampling two (2) soil borings extending to a depth of 40.0 feet BEG.
2. Laboratory testing of selected samples for index classification and strength purposes and visual/manual classification of all recovered samples.
3. Development of Geotechnical recommendations, and preparation of this report presenting our findings, evaluations, and recommendations.

FIELD EXPLORATION PROCEDURES

A total of two (2) soil borings extending to a depth of 40.0 feet BEG. The drilled soil boring locations are shown on the enclosed Plate 2 (Boring Location Diagram). The client specified the number, depth, and the locations of the borings.

The borings were drilled with a track mounted Geoprobe, using hollow stem augers to advance the borehole. The soil sampling was performed in accordance with the split-barrel procedure (ASTM: D 1586) with an automatic hammer, and in-situ undisturbed samples were retrieved using a split spoon sampler. The crew prepared field logs noting the drilling and sampling methods along with Standard Penetration Test values (N-values, "blows per foot"), observed groundwater levels, and preliminary soil classifications. Representative samples of the recovered soils were placed in sealed jars to reduce moisture loss before being submitted to our laboratory for examination, testing, and final classification by a Geotechnical Engineer.

If present, groundwater levels in the boreholes were measured during and after drilling. The levels of any encountered water are noted on the respective logs. The observed groundwater levels are discussed under the "Groundwater Conditions" section of this report. The drill crew backfilled the boreholes with soil cuttings after completing the groundwater measurements.

LABORATORY TESTING AND CLASSIFICATION

A Geotechnical Engineer initiated the laboratory classification program by examining each sample to determine the major and minor components, while also noting the color, degree of saturation, and lenses or seams found in the samples. The Engineer directed that selected samples be tested for moisture content and unconfined compressive strength (by hand penetrometer). The test results are shown on the respective logs in the Appendix.

The Geotechnical Engineer visually/manually classified the soils on the basis of texture and plasticity in accordance with the Unified Soil Classification System (USCS). The capital letters in parentheses following the written soil descriptions on the boring logs are estimated group symbols based on this system. A chart describing the properties of the groups under this system is also included in the Appendix. After the classification, the Geotechnical Engineer grouped the soils by type into the strata shown on the boring logs. The stratification lines shown are approximate, *in situ*, as the transition between soil types may be abrupt or gradual in both the horizontal and vertical directions.

Soil samples will be retained for ninety (90) days after the date of this report. Please notify us if there is a desire to have the samples retained beyond this period; otherwise, the samples will be discarded.

SITE CONDITIONS

Topography/Surface Features

At the time of our initial site visit, the area next to the existing bridge over the Winfield Creek which is proposed for walking bridge, was covered with grass, heavy brush and mature trees. We understand that the Village of Wheaton is planning to build a more traditional walking bridge structure for the ease and safety of the general public crossing the creek on foot. The topography of the site was observed to be relatively flat on both sides but sloping towards the creek bed at both banks with surface elevations ranging from 720 to 721 between our borings. Elevation was assigned based on GPS coordinates provided by the client and Google Earth. We strongly recommend that your project surveyor tie these elevations to National Geodetic Vertical Datum.

Soil Conditions

The soils encountered are shown on the borehole log in the Appendix of this report. The soil characteristics have been established only at the specific boring locations and under the environmental conditions at the time of our field exploration. Variations in the soil stratigraphy, compressive strength of the soil, and moisture content were encountered; and additional variations probably exist between and around the borings. The nature and extent of these variations would not become evident until exposed by construction excavation.

In general, underlying the surficial silty clay topsoil and fill soils, the site is predominately formed of stiff to very stiff silty and sandy clay, loose to dense sand and gravel. The soil profile described below is a generalized description of the conditions encountered at the boring location. The borehole log should be referred to for more specific information.

At Boring B-1, NST crew collected one (1) grab sample between 3.5 to 5.0 feet depth BEG and tested for pH values by a NELAP certified laboratory. Test results show a pH value of 8.1mg/Kg for the grab sample.

Similarly, at Boring B-2 NST crew collected one (1) grab sample between 1.0 to 2.5 feet depth BEG and tested for pH values by a NELAP certified laboratory. Test results show a pH value of 8.1mg/Kg for the grab sample.

In boring B-1, approximately 6 inches of topsoil (TS) were noted at the surface followed by hard, dark brown silty clay (CL) at an approximate depth of 3.5 feet BEG. Underlying the dark brown silty clay (CL), very stiff to hard, brown silty clay (CL) was encountered to an approximate depth of 8.5 feet BEG followed by hard, brownish gray silty clay (CL) to an approximate depth of 11.0 feet BEG. Underlying the brownish gray silty clay (CL), hard to very stiff, gray silty clay (CL) to an approximate depth of 16.0 BEG followed by extremely dense, gray gravel (GW) seam to an approximate depth of 18.5 feet BEG. Underlying the gray gravel (GW) seam, very stiff to stiff, gray silty clay (CL) was encountered to an approximate depth of 28.5 feet BEG followed by very stiff, wet, gray sandy clay (SC) to an approximate depth of 31.0 feet BEG. Underlying the gray

sandy clay (SC), wet, dense, brown sandy gravel (SP-GM) to an approximate depth of 38.5 feet BEG followed by medium dense, grayish brown sandy gravel (SP-GM) to the termination depth of 40.0 feet BEG. Free groundwater was encountered at 28.5 feet BEG during drilling and at 19.0 feet BEG after drilling.

In boring B-2, approximately 12 inches of topsoil fill (TS FILL) were noted at the surface followed by hard, dark brown silty clay fill (FILL) at an approximate depth of 3.5 feet BEG. Underlying the dark brown silty clay fill (FILL), very stiff dark brown, buried silty clay topsoil (TS) was encountered to an approximate depth of 6.0 feet BEG followed by very stiff, brown and light gray silty clay (CL) to an approximate depth of 8.5 feet BEG. Underlying the brown and light gray silty clay (CL), hard to stiff, gray silty clay (CL) to an approximate depth of 26.0 BEG followed by medium dense, brownish gray sandy gravel (SP-GM) seam to an approximate depth of 28.5 feet BEG. Underlying the brownish gray sandy gravel (SP-GM) seam, very stiff, gray silty clay (CL) was encountered to the termination depth of 40.0 feet BEG. Free groundwater was encountered at 26.5 feet BEG during drilling and at 39.0 feet BEG after drilling.

The stiff to hard consistency of silty clay was exhibited by calibrated pocket penetrometer resistance (PPR) values of 1.5 ton per square foot (tsf) to 4.5 tsf. The Natural moisture content in silty clay was tested to range from 12.8 to 37.7 percent.

Groundwater Conditions

Groundwater level observations were made during and upon completion of drilling. Free groundwater was encountered at 28.5 feet BEG and 26.5 BEG respectively at Borings B-1 & B2 during drilling. Similarly, free groundwater was encountered at 19.0 feet BEG and 39.0 BEG respectively at Borings B1 & B2 after drilling.

It should be noted that groundwater levels are subject to seasonal and long-term variations in response to climatic conditions and man-made influences. Groundwater levels particularly in less permeable cohesive soils (clay) like those found at the site occasionally, may not have had adequate time to stabilize prior to backfilling the boreholes. The hydrostatic groundwater level and any perched water levels will vary in elevation seasonally and annually depending on local amounts of precipitation, evaporation, surface-runoff, infiltration, and land use. If detailed information about the groundwater levels is required, we recommend installing piezometers or monitoring wells to permit long-term observation of the groundwater levels and the fluctuations in these levels.

Brown and gray coloration is typically an indication of a semi-permanent groundwater table. The brown and gray coloration of clay soils is indicative of oxidation whereas the gray coloration is indicative of a lack of oxidation which tends to occur below the lowest level of groundwater.

REVIEW AND RECOMMENDATIONS

Discussion

Based upon our analysis of the soil conditions, limited laboratory analysis and the available project information, the following recommendations were developed. If the project characteristics are changed from those assumed herein, our recommendations should be reviewed to see whether any modifications are needed. Any areas found to be unsuitable within foundation excavation should be undercut further and replaced with newly approved compacted granular fill material. This section provides NST's geotechnical analysis and recommendations for the design of the proposed bridge, abutments and wall based on the results of the field exploration, and laboratory testing.

Site Preparation

Due to the elevation difference within the proposed bridge foundation area, cut or fill may have to be accomplished in site grading. Prior to the site grading all existing pavement and existing retaining wing walls (if any) should be removed and debris should be properly disposed of outside the construction area. Existing above and underground utilities, if encountered/located within the proposed construction areas, if affected by construction activities, should be relocated prior to excavation. Debris generated from the demolition of underground utilizes, including abandoned pipes, structures, should be removed from the site as construction proceeds.

The exposed, naturally occurring subgrade soil should be observed and tested by a Geotechnical Engineer or an experienced Materials Technician from **NASHnal Soil Testing, LLC** office to identify the unsuitable soils. The subgrade soil should be carefully observed, and any unsuitable or unstable materials should be removed from the pavement subgrade areas. If perched water is encountered or if rain or snowfall occurs, dewatering may be required in these areas when exposed or if subjected to any other form of water infiltration that would saturate the area.

To backfill the over-excavated areas if any under the foundation, we recommend using imported granular material meeting the gradation requirements of IDOT CA-6. Clayey soils can also be used as backfill, however, it is difficult to compact clayey soils in the narrow trenches in order to achieve the project specifications.

Granular fill meeting the CA-6 gradation specifications should be placed in 8 to 10-inch loose lifts and compacted to at least 95% of the maximum Modified Proctor dry density (ASTM: D 1557). If used, clayey materials should be placed in 6 to 8-inch loose lifts and compacted to at least 95% of the maximum Modified Proctor dry density (ASTM: D 1557) or 98% of the maximum Standard Proctor dry density (ASTM: D 698). Please refer to the notes in the report Appendix concerning placement of compacted fill soils.

Foundation Support

NST evaluated shallow (Slab foundation) and Deep (Drilled shaft/caisson) foundation system for the proposed bridge. Based on the subsurface conditions encountered and the preliminary design information provided by the structural engineer, The proposed pre-cast bridge structure can be supported by either foundation system. If driven pile foundations are considered, we recommend performing additional drilling to determine the depth of bedrock.

A Slab foundation for abutment:

The footings for the proposed abutment can be supported at a depth of about 3.5 to 4 feet below the existing grade. As revealed by the soil borings, the existing soils at the proposed footing subgrade will mostly be comprised of very stiff to hard lean clay at Boring B1 and buried topsoil (TS) at Boring B2. When any unsuitable fill material is encountered within the proposed abutment's footprint, an appropriate oversize zone will be required to be removed. Void created in doing so should be backfilled with compacted granular fill. Any existing utilities or drain tiles, if encountered should also be removed and trenches should be backfilled with compacted granular fill.

Care should be exercised so as not to disturb the bearing soils encountered at the bottom of excavation. The exposed foundation subgrade should be carefully observed by our representative to verify that the footings will be placed on suitable bearing materials. Representative hand auger borings should be performed in the excavations to verify that the materials at the foundation subgrade resemble those described on the Boring Logs. Any unsuitable, mixed, unstable, or low bearing soils should be completely removed from the footing areas. The required excavation to remove the low bearing or unstable soils should be carried out covering a zone within a 1 horizontal to 1 vertical plane extended downward and outward from the outer limits of the proposed footings. Over excavated areas should be backfilled with compacted load-bearing fill as mentioned previously.

In our opinion, the proposed Abutments may be supported on spread footings after the recommended site preparation and foundation bearing materials observation has been completed. For frost protection, footings for the structure should bear at least 8.5 feet below exterior ground surface. Provided that all the unsuitable/unstable soils are removed from the foundation areas or soils have been upgraded and foundations are placed on properly compacted load bearing fill placed to remove the unstable materials, The shallow bridge footings can be proportioned for a maximum net allowable bearing pressure of 3,000 pounds per square foot (psf). This refers to the pressure transmitted to the soil in excess of the pressure from the adjacent depth of overburden. Due to the presence of fine medium sand below the clay layer and shallow water table, we recommend to lowering the water table about 6-8 feet in the area of construction, which will reduce the post construction settlement potential for the bridge abutments.

We recommend that abutment footings should have a minimum width of 48 inches, regardless of the contact pressure, to preclude shear distortion. The recommended bearing pressure would

provide a factor of safety of at least 3 with respect to the bearing capacity of the bearing strata. We estimate that the maximum building settlement would be about one inch, with differential settlement about 3/4 of this amount, if the bearing stratum is not wet, frozen, or disturbed at the time of construction. As an alternative to the compacted granular soil backfill, the undercuts can also be backfilled using lean (low strength) concrete and would not require lateral over-sizing.

For standard abutment foundation system, we recommend that the backfill around new foundations and in utility trenches (if any) be granular material, for relative ease of compaction in confined spaces. The fill should be placed in loose lifts about 4 to 6 inches thick and uniformly compacted with manually operated equipment to at least 95% of the maximum Modified Proctor dry density (ASTM D1557).

B Drilled Shaft (Caisson) foundations for abutment:

The drilled shaft (caisson) construction should be completed in accordance with IDOT Standard Specification for Road and Bridge Construction, drilled shaft Section 516. The temporary casing construction method should be applied where sandy, lean or granular material is present within the proposed shaft depth. The temporary casing may be required to prevent caving or excessive deformation of the hole, especially in the areas where silts & poorly graded sands are encountered. Drilled shaft construction with the use of a temporary casing should be completed in accordance with article 516.06 (c) in the IDOT Standard Specification for Road and Bridge Construction. A permanent casing covering the entire shaft length is recommended for both foundations.

It is recommended that the concrete be ready on site as the caisson excavation is completed, so that the concrete can be placed immediately after completing the excavation. This diminishes the potential of water buildup in the bottom of the shaft if encountered. Bottom cleanliness of the drilled shaft excavation should be observed from the ground surface with the use of flood light or down-hole camera. Workers should not enter the shaft to manually clean the base of the shaft due to safety reasons.

The ability of the shaft to resist lateral loads is dependent on the size of the shaft diameter and the passive pressures that develop in the soils along the shaft. Lateral loads on the drilled shafts should be analyzed for the maximum moments and lateral deflections. Software such as L-Pile and COM624 are normally used to determine the required shaft depth to resist the lateral loads, and the actual maximum moment and the anticipated shaft deflection. If the shaft deflection is excessive or if the embedment is inadequate to provide support, the shaft embedment could be increased to help address these issues. The shaft diameter should be increased if the deflection or the maximum moment is higher than the shaft designed resistance. Bellied shafts can be designed for a net allowable bearing capacity of 4000 psf when placed at a depth of approximately 8.5 to 10 ft depth below existing grade on top of the Hard gray silty clay layer. Alternatively, if deeper caissons are required for structural reasons a net allowable bearing capacity of 4000 psf when placed at a depth of approximately 30 ft depth below existing grade on top of the Hard gray silty clay layer.

CONSTRUCTION CONSIDERATIONS

Groundwater

Based on the conditions found in the borings, groundwater is expected during the excavation for footings or during the soil improvement process due to the variation in water table present within the creek. Any water, which enters excavations from perched groundwater seepage, surface run-off, or direct precipitation, must be promptly pumped out. Water must not be allowed to pond on the subgrade soils since it could soften and disturb them. The contractor should be prepared to handle both surface and groundwater encountered during the construction. The contractor shall plan an appropriate dewatering scheme so that all construction activities are performed in dry and stable conditions, especially to avoid potential post construction settlement in sandy materials with shallow groundwater.

Structural fill and concrete should not be placed in standing water or on wet or disturbed soils. Placing fill, asphalt, or concrete into standing water or over disturbed soil can trap softened soil under the structure and lead to excessive post-construction settlement/cracking & rutting, even if the softened zone is only a few inches thick.

Equipment Selection/Soil Disturbance

The soil types at this site, particularly the silty clays when they are saturated or during freeze/thaw conditions, could be disturbed by construction equipment. It is the contractor's responsibility to choose equipment and work procedures, which will not unduly disturb the subgrade soils in the construction and landscaped areas. The contractor should also route construction traffic away from areas of planned pavement and slabs, to minimize soil disturbance.

If the equipment that is chosen causes rutting or pumping of the soil, it is the contractor's responsibility to switch to other types of equipment. The responsibility to properly select construction equipment to avoid disturbing soil on the site lies solely with the contractor. A note to this effect should be included in the project specifications.

Winter Construction

If the construction of this project begins or extends into the winter, the contractors must take special precautions. Only unfrozen fill and backfill should be used, and contractors may charge extra for importing unfrozen soil or keeping stockpiles of backfill from freezing. Clay soil will be especially difficult to work with under cold wet and/or freezing conditions. Placement of fill and/or asphalt/concrete must not be permitted on frozen soil, and the bearing soils or subgrade should not be allowed to freeze after the concrete is placed. All footing excavations should be protected from freezing conditions and maintained free of ponded water before asphalt/concrete placement. The footings should be cast as soon as possible after excavation is prepared and backfilled as soon as possible after the concrete has attained its strength.

Construction Safety

All excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P "Excavations and Trenches." This document states that excavation safety is solely the responsibility of the contractor; the determination of SAFE slopes for excavation and trenches is to be made by the contractor's "competent person." Reference to this OSHA requirement should be included in the job specifications. The temporary excavation slopes greater than 5 feet in depth should conform to OSHA regulations. In general, such slopes should not be steeper than 1.5 horizontal to 1 vertical (OSHA Soil Type C), unless shoring is used.

The responsibility to provide safe working conditions on this site for earthwork, construction, or any associated operations, is not borne in any manner by NASHnai Soil Testing, LLC.

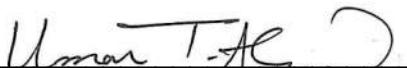
Field Observation and Testing

Proper observation and testing during the construction phase of this project is an integral part of our recommendations. On-site observation during site preparation, fill placement, compaction, and footing construction, should be done by qualified personnel from **OUR** office. Exposed soils in excavations for backfill should be tested by means of hand auguring, and with a Dynamic Cone Penetrometer (DCP) in sandy soils or a Static Cone Penetrometer (SCP) in clayey soils.

Proposed fill materials should be submitted to our lab for Proctor compaction tests, and tests to check compliance with our recommendations and project specifications. A representative number of field density tests should be taken in compacted fill to aid in judging its suitability. The building materials should be tested in accordance with the project specifications. We would be pleased to provide the testing services for this project.

GENERAL QUALIFICATIONS

This report has been prepared based on the soil and groundwater conditions found in our borings and on the design data that you have related to us. This report is intended solely for this project at the specific locations identified in the Introduction and Scope of Services. If there are any changes in size, scope, elevation, structural loads, location, use or nature of the structure from those discussed in the introduction of this report, or if our understanding of the project is incorrect or incomplete, we should be given the opportunity to review or modify our recommendations. If changes are made in the design and we are not given the opportunity to review these changes relative to our recommendations and to respond in writing, or we are not provided the opportunity to confirm the soil conditions are as expressed in this report during the construction of this project, our recommendations will not be considered valid. No specific efforts were performed to determine the thickness of the topsoil layer, the topsoil thickness given in our logs is an estimate. If the true thickness of topsoil is required, we recommend that numerous detailed hand augur probes be performed throughout this parcel.


Pedestrian Bridge Over Winfield Creek
South of Roosevelt Road, Wheaton, IL
Project Number 2024-1301-04G
June 16, 2024

For this geotechnical exploration, we drilled two (2) soil boring in the specified areas. Variations in the subsurface conditions may be found during construction, and it is probable that additional variations exist on the site that cannot be determined from our boring or the site reconnaissance. These variations, which could include greater or shallower depths of unsuitable soils than found at our borings, would not become apparent until the excavation is started. No warranty, express or implied, is presented in this report with respect to the soil and groundwater conditions on this site.

STANDARD OF CARE

The recommendations and opinions contained in this report are based on our interpretation of the subsurface conditions and represent our professional judgment. These judgments were determined in accordance with currently accepted engineering practices at this time and location, by professionals working under similar time and budget constraints. No other warranty is implied or intended.

Prepared by:

Umar T. Ahmad, PE

Registered Professional Engineer, Illinois
Registration # 062-055148

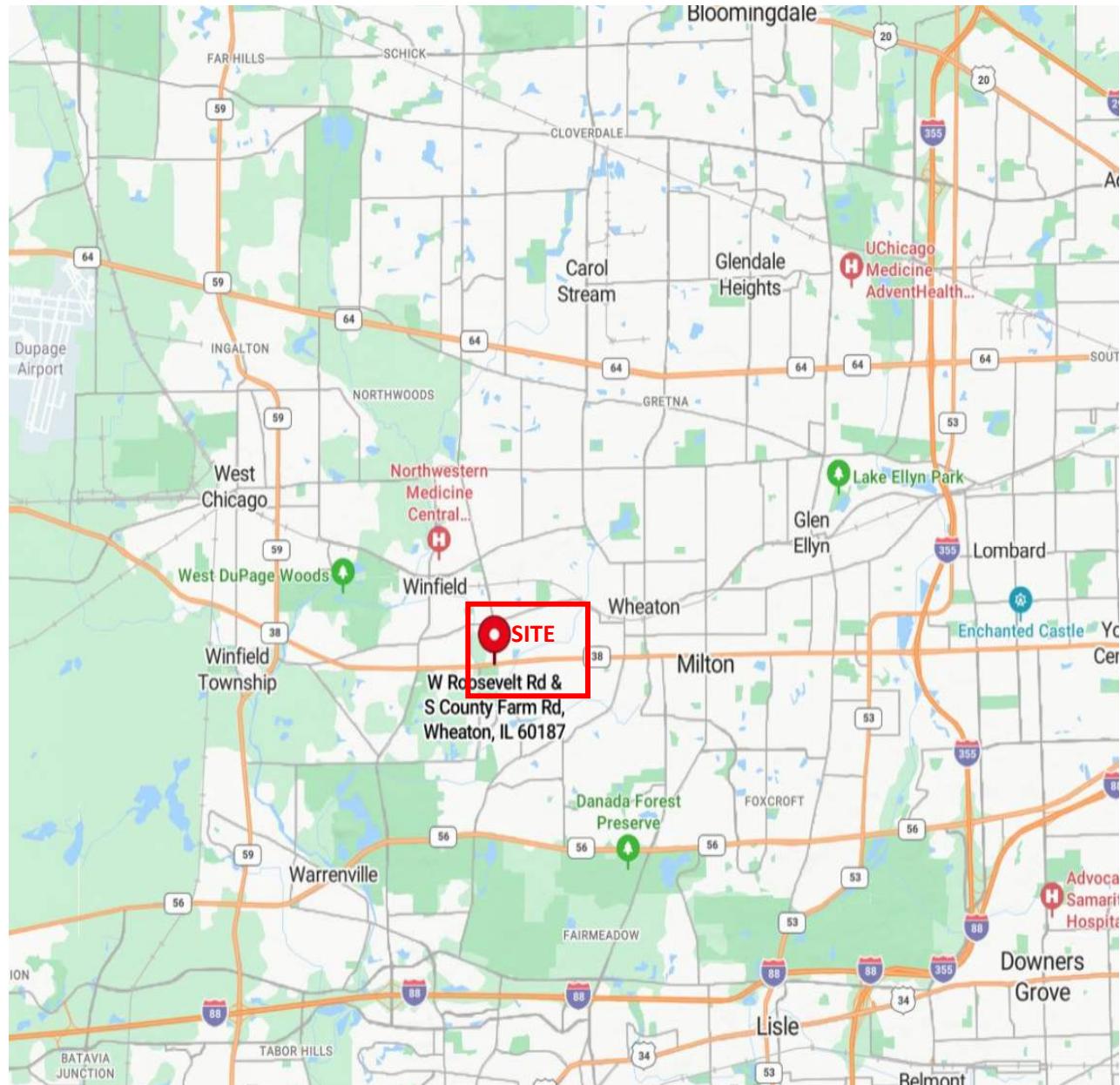
Expires 11/30/2025

APPENDIX

SITE LOCATION DIAGRAM (Plate No. 1)

BORING LOCATION DIAGRAMS (Plate No. 2)

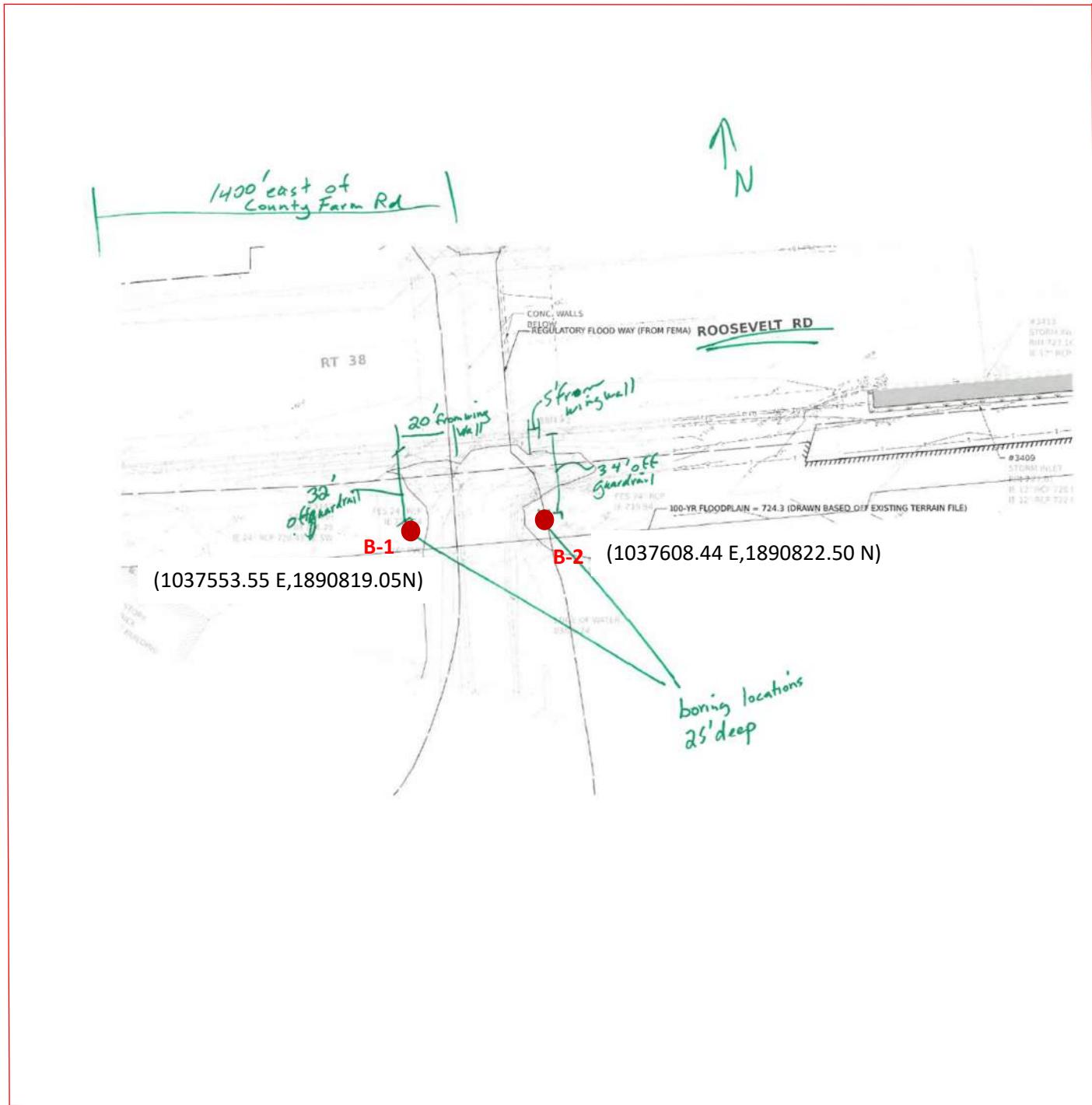
BORING LOGS (Plate No. 3-6)


UNCONFINED COMPRESSION TEST DATA

KEY TO TEST DATA

CLASSIFICATION OF SOILS

NOTES ON PLACEMENT OF COMPACTED FILL


pH RESULTS BY NELAP LABORATORY

2024-1301-04G

Plate No. 1

Pedestrian Bridge
County Farm Road & Roosevelt Road Intersection, Wheaton, IL
Site Location Diagram

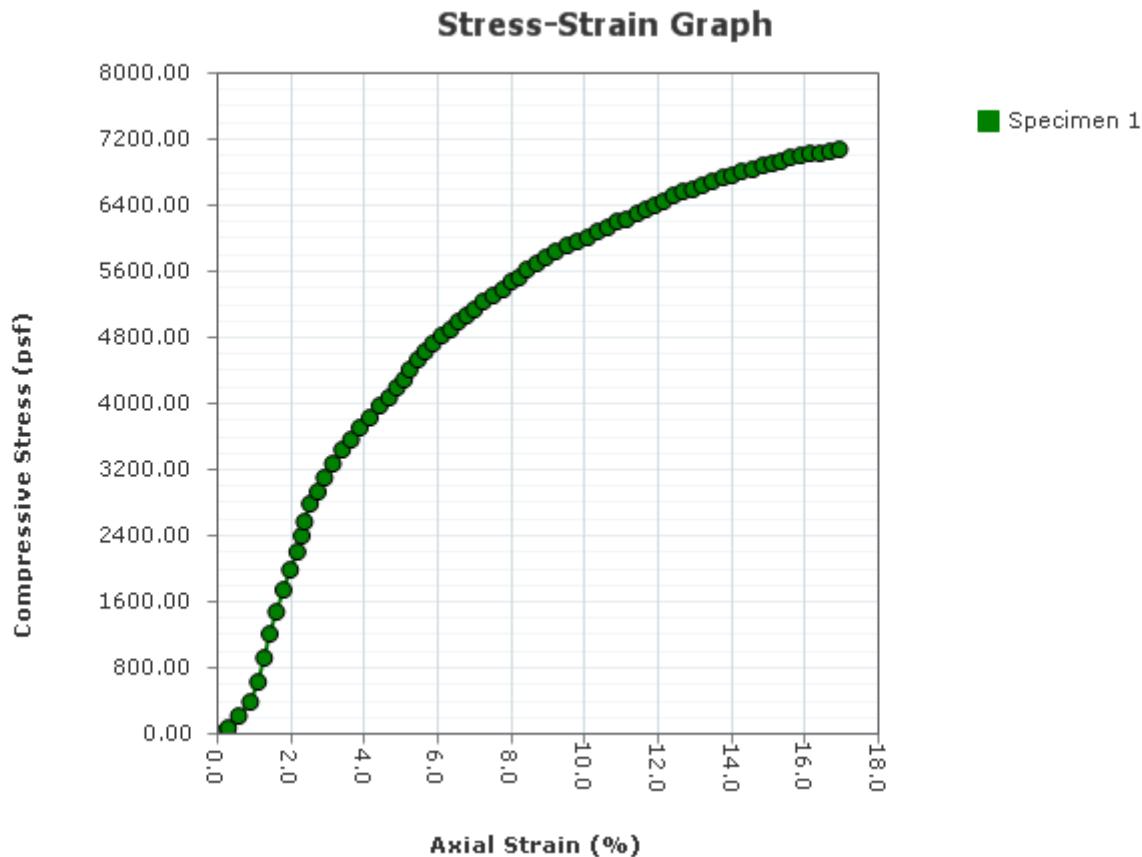

2024-1301-04G

Plate No. 2

Pedestrian Bridge
County Farm Road & Roosevelt Road Intersection, Wheaton, IL
Boring Location Diagram

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 9

Sample Depth: 21.0-22.5 ft

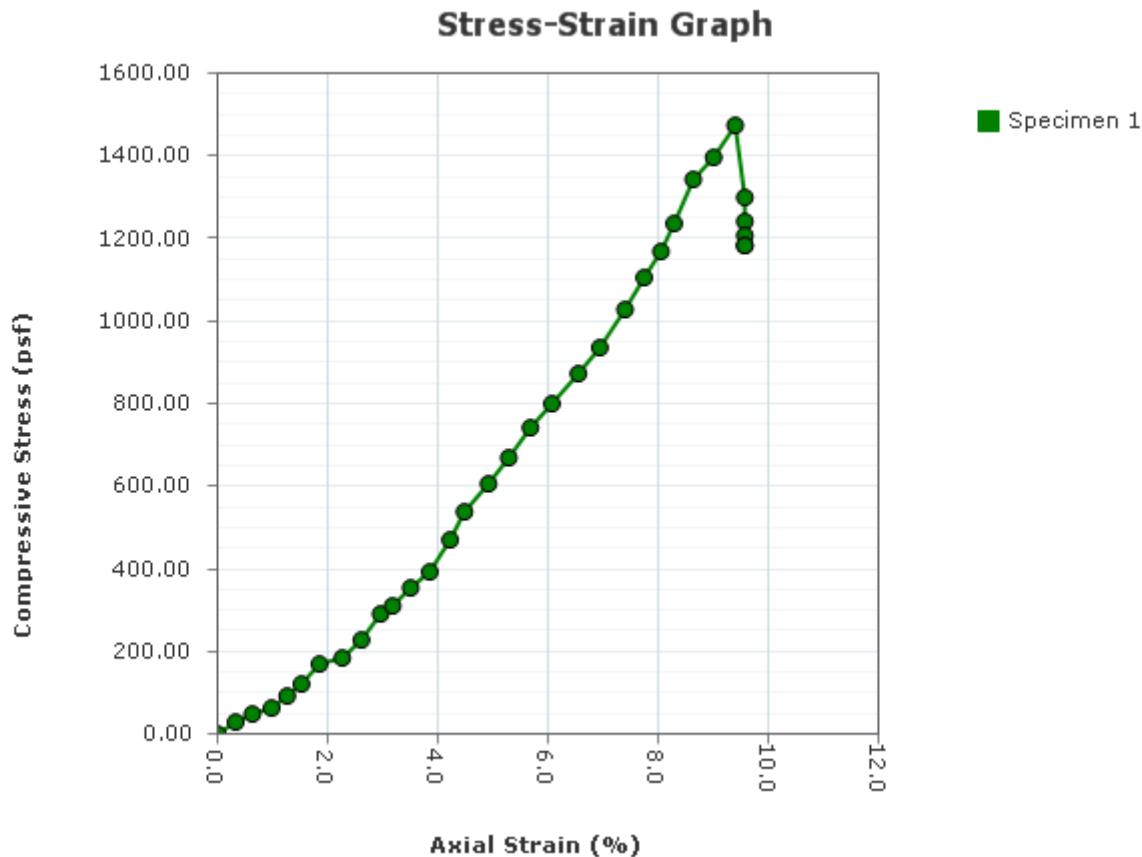
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 11

Sample Depth: 26.0-27.5 ft

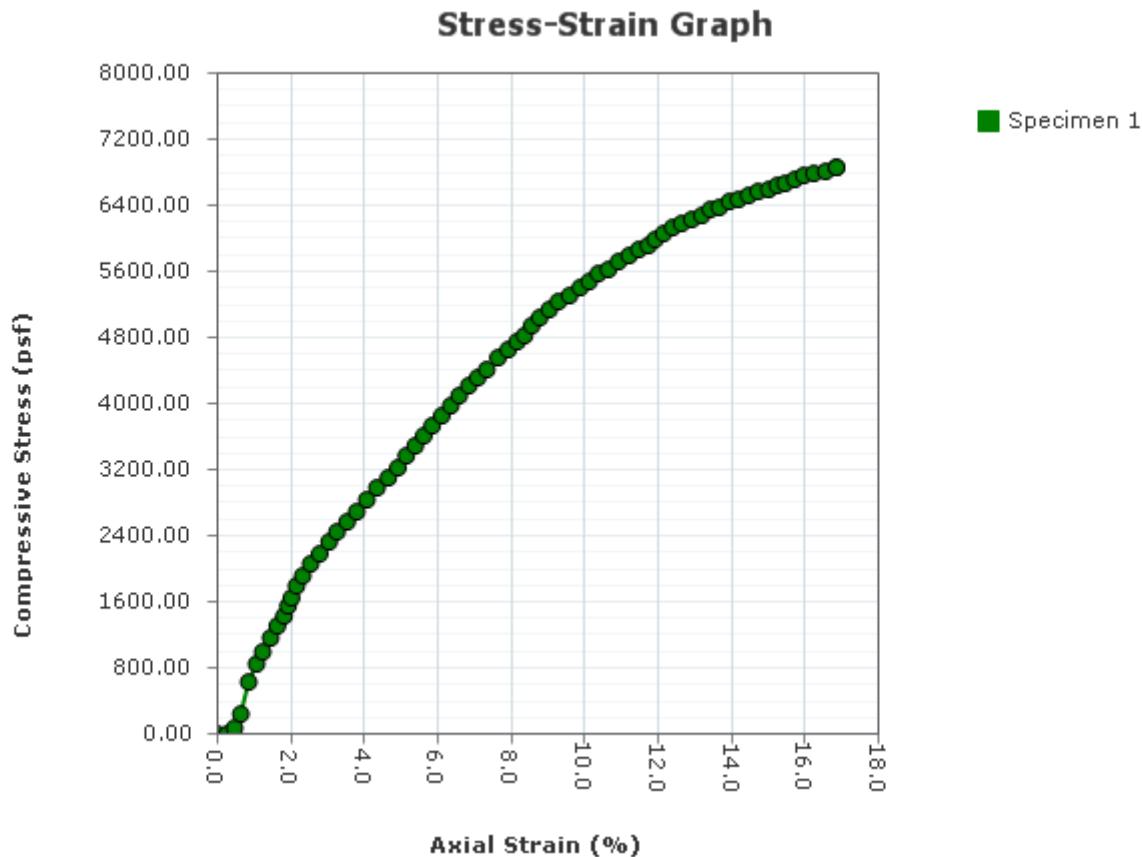
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 13

Sample Depth: 31.0-32.5 ft

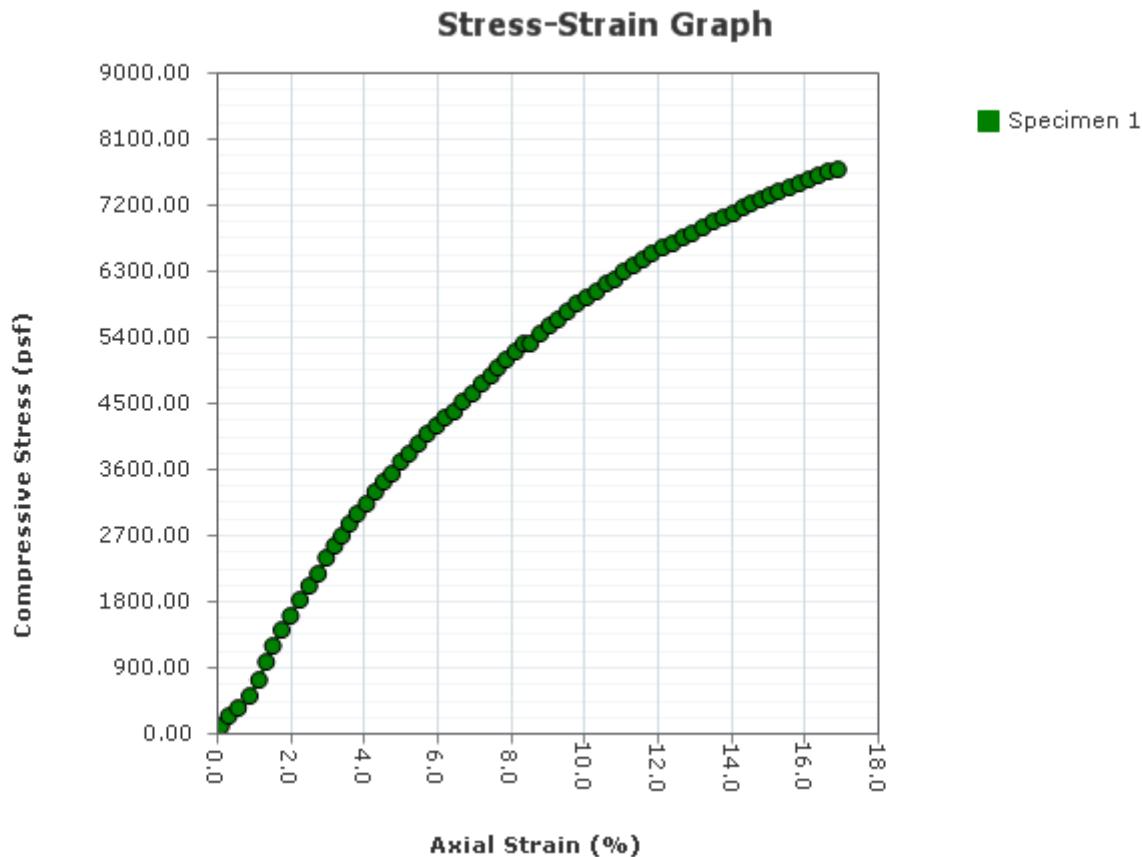
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number:

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 7

Sample Depth: 16.0-17.5 ft

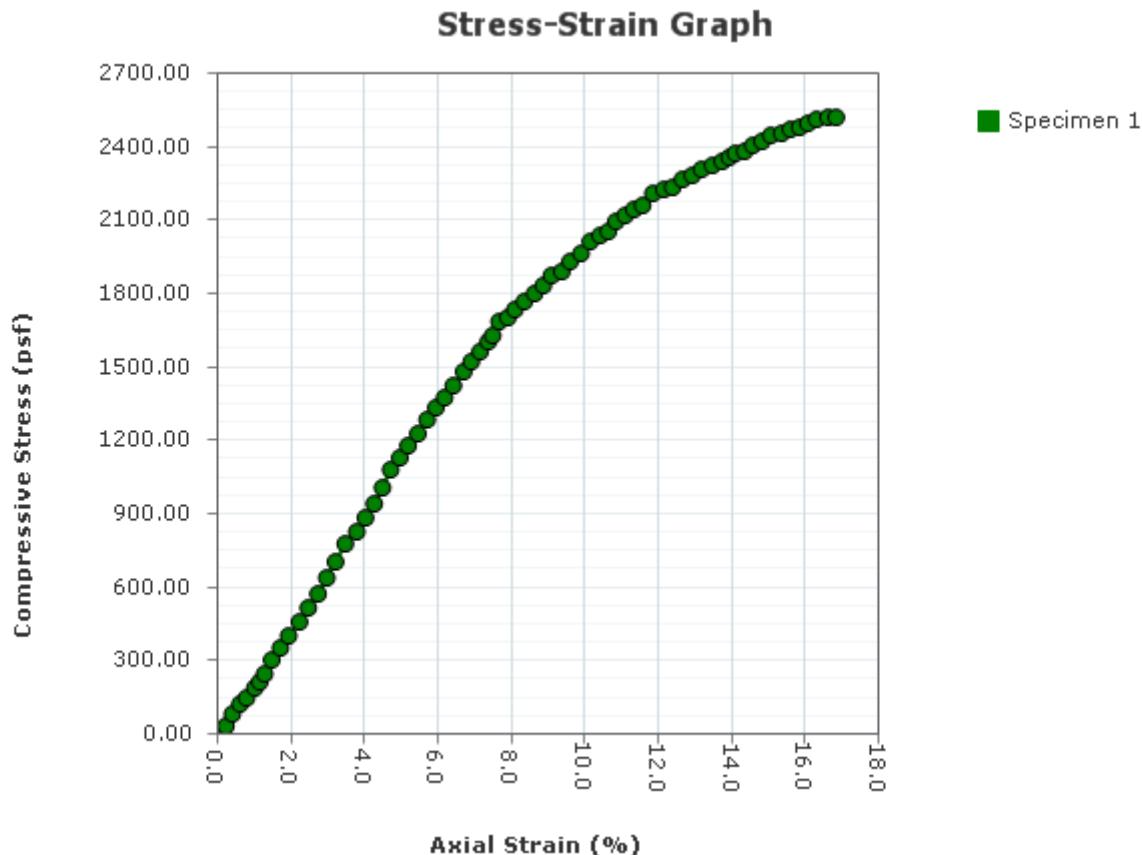
Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number:


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 7

Sample Depth: 21.0-22.5 ft

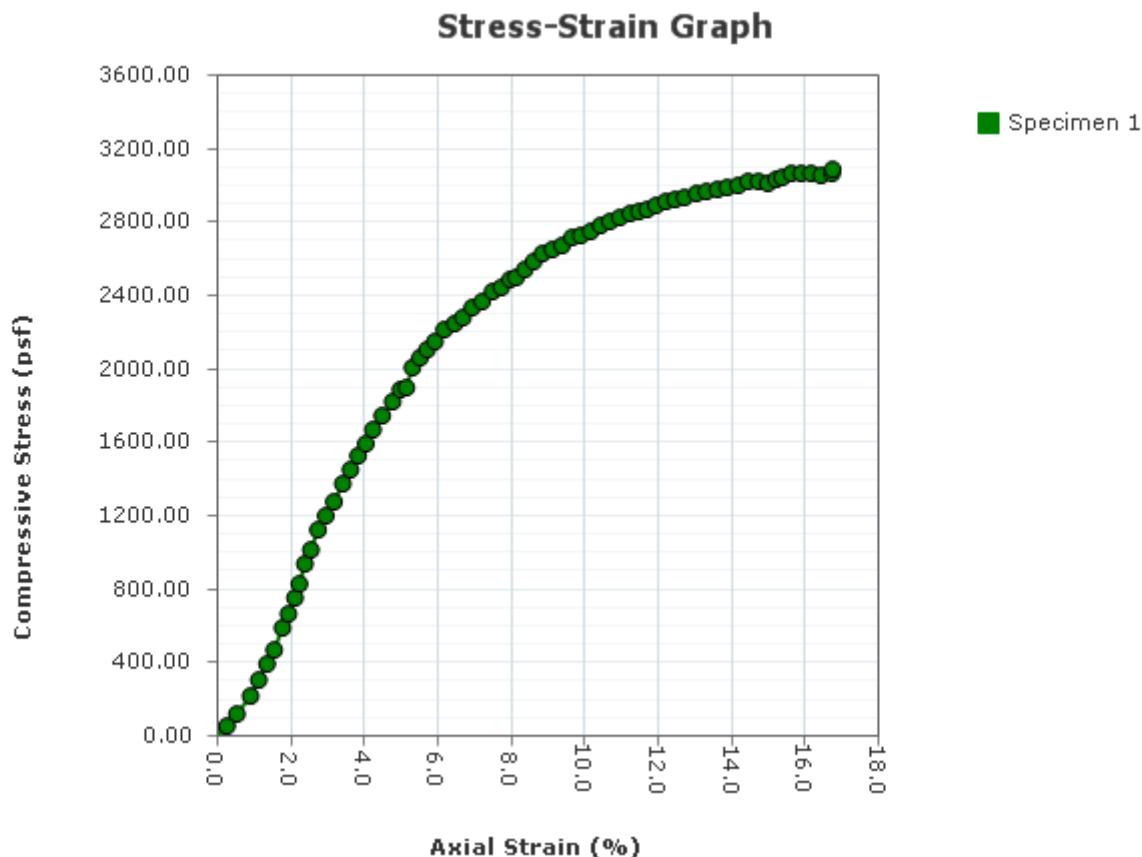
Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/20/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 15

Sample Depth: 36.0-37.5 ft

Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G

Test Date: 6/20/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

KEY TO TEST DATA

DRILLING & SAMPLING SYMBOLS:

SL	=	SS with Liner	ST	=	3" Shelby Tube
SS	=	Split Spoon — 1%" I.D., 2" O.D., unless otherwise noted	HS	=	Hollow Stem Auger
ST	=	Shelby Tube — 2" O.D., unless otherwise noted	WS	=	Wash Sample
PA	=	Power Auger	FT	=	Fish Trail
DB	=	Diamond Bit — NX: BX: AX	RB	=	Rock Bit
AS	=	Auger Sample	BS	=	Bulk Sample
JS	=	Jar Sample	PM	=	Pressuremeter test—in situ
VS	=	Vane Shear			
Standard "N" Penetration	=	Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch OD split spoon, except where noted.			

WATER TABLE

MEASUREMENT SYMBOLS

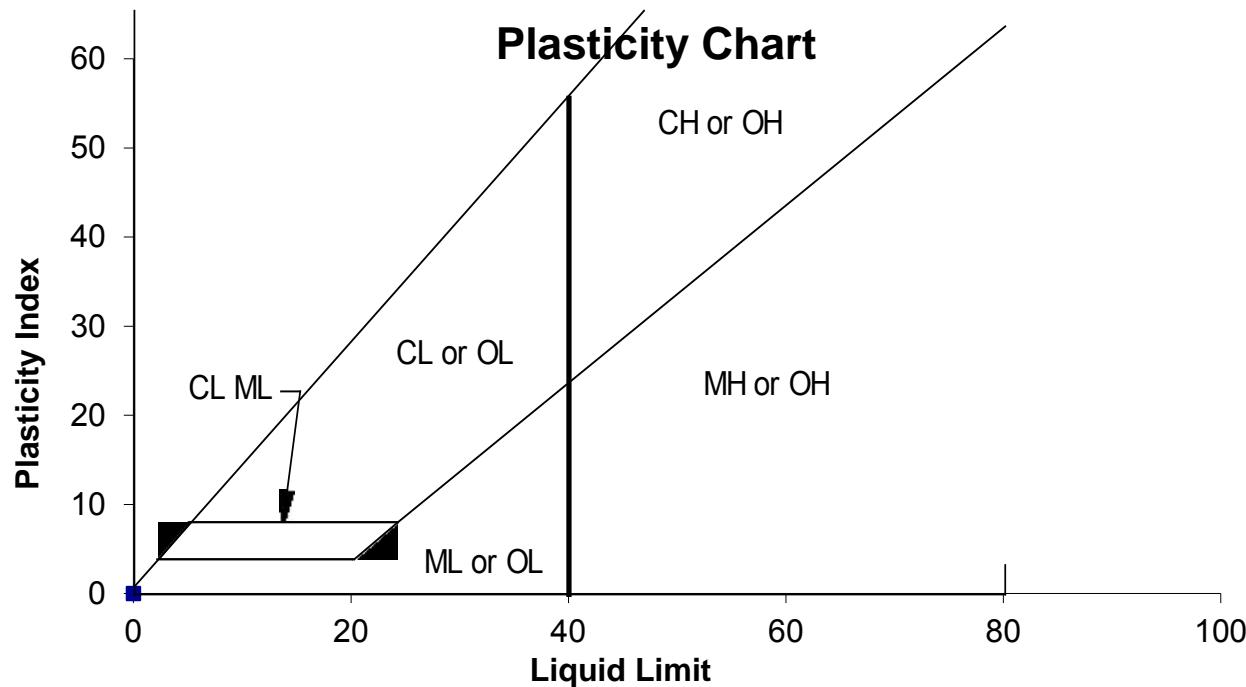
WL	=	Water Level
WCI	=	Cave In
DCI	=	Dry Cave In
WS	=	While Sampling
WD	=	While Drilling
BC	=	Before Casing Removal
ACR	=	After Casing Removal
AB	=	After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible even after several days observation, and additional evidence of ground water elevations must be sought.

GRADATION DESCRIPTION & TERMINOLOGY

Coarse Grained or Granular Soils have more than 50% of their dry weight retained on a #200 sieve; they are described as: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are described as: clays or clayey silts if they are cohesive, and silts if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency, and their plasticity.

<u>Major Component Of Sample</u>	<u>Size Range</u>	<u>Descriptive Term(s) (Of Components Also Present in Sample)</u>	<u>Percent of Dry Weight</u>
Boulders	Over 8 in. (200mm)	Trace	1 — 9 .
Cobbles	8 in. to 3 in. (200mm to 75mm)	Little	10 — 19
Gravel	3 in. to #4 sieve (75mm to 2mm)	Some	20 — 34
Sand	#4 to #200 sieve (2mm to .074mm)	And	35 — 50
Silt	Passing #200 sieve (0.074mm to 0.005mm)		
Clay	Smaller than 0.005mm		


CONSISTENCY OF COHESIVE SOILS

RELATIVE DENSITY OF GRANULAR SOILS

<u>Unconfined Comp. Strength, Qu, tsf</u>	<u>Consistency</u>	<u>N — Blows/ft.</u>	<u>Relative Density</u>
<0.25 —	Very Soft	0 — 3	Very Loose
0.25 — 0.49	Soft	4 — 9	Loose
0.50 — 0.99	Medium (Firm)	10 — 29	Medium Dense
1.00 — 1.99	Stiff	30 — 49	Dense
2.00 — 3.99	Very Stiff	50 — 80	Very Dense
4.00 — 8.00	Hard	80 +	Extremely Dense
>8.00	Very Hard		

UNIFIED SOIL CLASSIFICATION CHART

CRITERIA FOR ASSIGNING GROUP NAMES & GROUP SYMBOLS USING LABORATORY TEST RESULTS				Soil Classification	
				Group Symbol	Group Name
COURSE-GRAINED SOILS More than 50% retained on #200 Sieve	GRAVELS More than 50% of course fractions are retained on #4 sieve	CLEAN GRAVELS Less than 5% fines	Cu \leq 4 and 1 \leq Cc \leq 3	GW	Well Graded Gravel
			Cu $<$ 4 and/or 1 $>$ Cc $>$ 3	GP	Poorly Graded Gravel
		GRAVELS With more than 12% fines	Fines classify as ML or MH	GM	Silty Gravel
			Fines classify as CL or CH	GC	Clayey Gravel
	SANDS 50% or more of course fractions passes #4 sieve	CLEAN SANDS Less than 5% fines	Cu \leq 6 and 1 \leq Cc \leq 3	SW	Well Graded Sand
			Cu $<$ 6 and/or 1 $>$ Cc $>$ 3	SP	Poorly Graded Sand
		SANDS With more than 12% fines	Fines classify as ML or MH	SM	Silty Sand
			Fines classify as CL or CH	SC	Clayey Sand
FINE-GRAINED SOILS 50% or More Passed the #200 Sieve	SILTS & CLAYS Liquid Limit Lower than 50%	Inorganic PI $>$ 7 and plots on or above "A" line	PI $>$ 7 and plots on or above "A" line	CL	Non to Low Plasticity Clay
			PI $<$ 4 and plots below "A" line	ML	Silt
		Organic $\frac{\text{Liquid Limit (Oven Dried)}}{\text{Liquid Limit (Not Dried)}} < 0.75$	$\frac{\text{Liquid Limit (Oven Dried)}}{\text{Liquid Limit (Not Dried)}} < 0.75$	OL	Organic Clay or Silt
	SILTS & CLAYS Liquid Limit 50% or Higher		PI plots on or above "A" line	CH	Highly Plastic Clay
	Inorganic PI plots below "A" line	PI plots below "A" line	MH	Elastic Silt	
		$\frac{\text{Liquid Limit (Oven Dried)}}{\text{Liquid Limit (Not Dried)}} < 0.75$	OH	Organic Clay or Silt	
	Highly Organic Soils	Primarily organic material, darker and with organic odor		PT	Peat

NOTES ON PLACEMENT OF COMPACTED FILL SOIL

GENERAL

The placement of compacted fill for support of foundations, floor slabs, pavements, or earth structures should be carried out by an experienced excavator with the proper equipment. The excavator must be prepared to adapt his procedures, equipment, and materials to the type of project, to weather conditions, and the structural requirements of the architect and engineer. Methods and materials used in summer may not be applicable in winter; fill used in dry excavations may not be suitable in wet excavations or during periods of precipitation; proposed fill soil may require wetting or drying for proper placement and compaction. Conditions may also vary during the course of a project or in different areas of the site. These needs should be addressed in the project drawings and specifications.

EXCAVATION/BACKFILL BELOW THE WATER TABLE

It is common to have to excavate and replace unsuitable soils below the water table for site correction. As a general rule of prudent construction technique, we recommend that excavation/backfill below the water table not be permitted, unless the excavation is dewatered. Numerous problems can develop when this procedure is attempted without dewatering.

- Inability of the equipment operators and soil technicians to observe that all unsuitable soil/materials have been removed from the base of the excavation.
- Inability to observe and measure that proper lateral oversizing is provided.
- Inability to prevent or correct sloughing of excavation sidewalls, which can result in unsuitable soils trapped within the select backfill.
- Inability of the contractor to adequately and uniformly compact the backfill.
- Possibility of disturbance of the suitable soils at the base of the excavation.

The dewatering methods, normally chosen at the contractor's option, should follow prudent construction practice. Excavations in clay can often be dewatered with sump pits and pumps; this technique would not be applicable for excavation extending into permeable granular soil, especially for depths significantly below the water table. Dewatering granular soils should normally be done with well points or wells. When dewatering is needed, we strongly recommend that the procedures be discussed at pre-bid or pre-construction meetings. The architect and engineer should review the dewatering technique chosen by the contractor before construction starts; it should not be left until excavation is under way.

The selection of proper backfill materials is important when working in dewatered excavations. Even with dewatering, the base is usually wet and the contractor must be careful not to disturb the base. We recommend that the first lifts of backfill be a clean medium to course grain sand with less than 5% passing the #200 sieve. The use of silty sand, clayey sand, or cohesive/semi-cohesive soils is not recommended for such situations. The excavator should be required to submit samples of the proposed material(s) he plans to use as backfill before the fill is hauled to the site, so that it can be tested for suitability.

WINTER EARTHWORK CONSTRUCTION

Winter earthwork presents its own range of problems, which must be overcome; the situation may be complicated by the need for dewatering discussed above.

During freezing conditions, the fill used must not be frozen when delivered to the site. It also must not be allowed to freeze during or after compaction. Since the ability to work the soil while keeping it from freezing depends in part on the soil type, the specifications should require the contractor to submit a sample of his proposed fill before construction starts, for laboratory testing. If the soil engineer and structural engineer determine that it is not suitable, it should be rejected. In general, silty sand, clayey sand, and cohesive/semi-cohesive soils should not be used as fill under freezing conditions. All frozen soil of any type should be rejected for use as compacted fill.

It is important that compacted fill be protected from freezing after it is placed. The excavator should be required to submit a plan for protecting the soil. The plan should include details on the type and amount of material (straw, blankets, extra loose fill, topsoil, etc.) proposed for use as frost protection. The need to protect the soil from freezing is ongoing throughout construction and applies both before and after concrete is placed, until backfilling for final frost protection is completed. Foundations placed on frozen soil can experience heaving and significant settlement, rotation, or other movement as the soil thaws. Such movement can also occur if the soil is allowed to freeze after the concrete is placed and then allowed to thaw. The higher the percentage of fines (clay and silt, P-200 material) in the fill, the more critical is the need for protection from freezing.

ANALYTICAL REPORT

PREPARED FOR

Attn: Umar T Ahmad
NASHnal Soil Testing, LLC
23856 W. Andrew Road
Unit 103
Plainfield, Illinois 60585

Generated 6/11/2024 2:19:56 PM

JOB DESCRIPTION

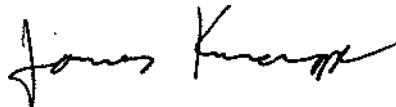
240268 Roosevelt

JOB NUMBER

500-251511-1

Eurofins Chicago
2417 Bond Street
University Park IL 60484

See page two for job notes and contact information.


Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated
6/11/2024 2:19:56 PM

Authorized for release by
Jim Knapp, Senior Project Manager
Jim.Knapp@et.eurofinsus.com
(630)758-0262

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	10
QC Association	11
QC Sample Results	12
Chronicle	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	16

Case Narrative

Client: NASHnal Soil Testing, LLC
Project: 240268 Roosevelt

Job ID: 500-251511-1

Job ID: 500-251511-1

Eurofins Chicago

Job Narrative 500-251511-1

Receipt

The samples were received on 06/03/24 15:27. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 26.9° C.

Receipt Exceptions

The samples were received at the laboratory outside the required temperature criteria: There was no cooling media present in the cooler.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Detection Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'

Lab Sample ID: 500-251511-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: B-2 1'-2.5'

Lab Sample ID: 500-251511-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Method Summary

Client: NASHnai Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method	Method Description	Protocol	Laboratory
9045D	pH	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Sample Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-251511-1	B-1 3.5'-5'	Solid	05/31/24 10:00	06/03/24 15:27
500-251511-2	B-2 1'-2.5'	Solid	06/03/24 10:30	06/03/24 15:27

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/07/24 16:31	1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/10/24 17:18	1

Definitions/Glossary

Client: NASHnai Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

□	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

General Chemistry

Analysis Batch: 771728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-1	B-1 3.5'-5'	Total/NA	Solid	9045D	
500-251511-1 DU	B-1 3.5'-5'	Total/NA	Solid	9045D	

Analysis Batch: 771890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-2	B-2 1'-2.5'	Total/NA	Solid	9045D	
LCS 500-771890/2	Lab Control Sample	Total/NA	Solid	9045D	
LCSD 500-771890/3	Lab Control Sample Dup	Total/NA	Solid	9045D	

QC Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method: 9045D - pH

Lab Sample ID: 500-251511-1 DU

Matrix: Solid

Analysis Batch: 771728

Client Sample ID: B-1 3.5'-5'

Prep Type: Total/NA

Analyte	Sample Result	Sample Qualifier	DU Result	DU Qualifier	Unit	D	RPD	RPD Limit
pH	8.1		8.3		SU		3	5

Lab Chronicle

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771728	SO	EET CHI	06/07/24 16:31

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771890	SO	EET CHI	06/10/24 17:18

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Accreditation/Certification Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Illinois	NELAP	IL00035	05-31-25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Chain of Custody Record 732519

Address _____

 eurofins

Environment Testing
America

TAL-8210

Client Contact		Project Manager			Site Contact		Date		COC No	
Company Name NASHNAL SOIL TESTING	Address 23856 W ANDREW RD #103	Tel/Email			Lab Contact		Carrier		of <u> </u> COCs	
City/State/Zip PLAINFIELD, IL, 60585		Analysis Turnaround Time							Sampler	
Phone 630 780 5201		<input type="checkbox"/> CALENDAR DAYS <input type="checkbox"/> WORKING DAYS TAT if different from Below _____							For Lab Use Only	
Fax		<input type="checkbox"/> 2 weeks <input type="checkbox"/> 1 week <input type="checkbox"/> 2 days <input type="checkbox"/> 1 day							Walk in Client	
Project Name 240268 ROOSEVELT Rd									Lab Sampling	
Site									Job / SDG No	
P O #									500-251511	
Sample Identification		Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont	Filtered Sample (Y/N)	Perform MS/MSD (Y/N)	Sample Specific Notes	
B-1 3.5'-5'		5/31	10AM	6	Soil	1	N	Y		
B-2 1'-2.5'		6/3	10:30AM	6	Soil	1	N	Y		
Preservation Used: 1=Ice, 2=HCl; 3=H ₂ SO ₄ ; 4=HNO ₃ , 5=NaOH; 6= Other _____										
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample										Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
<input type="checkbox"/> Non Hazard <input type="checkbox"/> Flammable <input type="checkbox"/> Skin Irritant <input type="checkbox"/> Poison B <input type="checkbox"/> Unknown					<input type="checkbox"/> Return to Client <input type="checkbox"/> Disposal by Lab <input type="checkbox"/> Archive for _____ Months					
Special Instructions/QC Requirements & Comments: Run pH test only										
Custody Seals Intact <input type="checkbox"/> Yes <input type="checkbox"/> No		Custody Seal No			27	Cooler Temp (°C) Obs'd 27.4	Corr'd 26.9	Therm ID No		
Relinquished by Adam Arroyo		Company Nashnal		Date/Time 6-3-24 3:10 pm	Received by		Company	Date/Time		
Relinquished by		Company		Date/Time	Received by		Company	Date/Time		
Relinquished by		Company		Date/Time	Received in Laboratory by Patricia EETA		Company	Date/Time	06/03/24 1527	

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Login Sample Receipt Checklist

Client: NASHnai Soil Testing, LLC

Job Number: 500-251511-1

Login Number: 251511

List Source: Eurofins Chicago

List Number: 1

Creator: Schmidt, Kara

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	26.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

www.nstengr.com

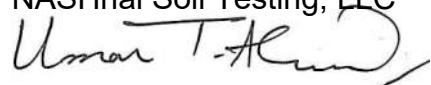
**GEOTECHNICAL EXPLORATION/FASIBILITY STUDY REPORT FOR
Pedestrian Bridge at Roosevelt Road Over Winfield Creek
Wheaton, IL**

PROJECT NUMBER 2024-1301-04G

Prepared For

**Mr. Jason Holy
V3 Companies
7325 Janes Avenue
Woodridge, IL 60517**

**Mr. Jason Holy
V3 Companies
7325 Janes Avenue
Woodridge, IL 60517**


Date: 6/16/2024

**RE: Geotechnical Exploration/Feasibility Study Report for
Pedestrian Bridge South of Roosevelt Road over Winfield Creek
Wheaton, IL**

Dear Mr. Holy:

Following your written authorization on May 22, 2024, of our proposal dated February 2, 2024; we have completed this geotechnical exploration. Enclosed you will find the results of our field exploration, related laboratory testing, and geotechnical report. This report is the instrument of service defined in our proposal; we are also submitting electronic copies.

We have enjoyed working with you on this phase of the project. Should you have any questions or if we can be of further assistance, please do not hesitate to contact us.

Sincerely,
NASHnal Soil Testing, LLC

Umar T. Ahmad, PE
Registered Professional Engineer, Illinois
Registration # 062-055148

Expires 11/30/2025

**GEOTECHNICAL EXPLORATION/FASIBILITY STUDY REPORT FOR
Pedestrian Bridge at South of Roosevelt Road Over Winfield Creek
Wheaton, IL**

PROJECT NUMBER 2024-1301-04G

<i>INTRODUCTION</i>	1
<i>SCOPE OF SERVICES</i>	1
<i>FIELD EXPLORATION PROCEDURES</i>	2
<i>LABORATORY TESTING AND CLASSIFICATION</i>	2
<i>SITE CONDITIONS</i>	3
Topography/Surface Features	3
Soil Conditions	3
Groundwater Conditions	4
<i>REVIEW AND RECOMMENDATIONS</i>	5
Discussion	5
Site Preparation	5
Foundation Support	6
<i>CONSTRUCTION CONSIDERATIONS</i>	8
Groundwater	8
Equipment Selection/Soil Disturbance	8
Winter Construction	8
Construction Safety	9
Field Observation and Testing	9
<i>GENERAL QUALIFICATIONS</i>	9
<i>STANDARD OF CARE</i>	10
<i>APPENDIX</i>	11

INTRODUCTION

It is our understanding that Village of Wheaton is planning to build a pedestrian bridge to cross the Winfield creek on south side of the Roosevelt Rd. in Wheaton (about 1400 feet east of County Farm Road and on the south side of the existing roadway bridge).

At the time of our initial site visit, the area next to the existing bridge over the Winfield Creek which is proposed for walking bridge, was covered with grass, heavy brush and mature trees. We understand that the Village of Wheaton is planning to build a more traditional walking bridge structure for the ease and safety of the general public crossing the creek on foot.

The topography of the site was observed to be relatively flat on both sides but sloping towards the creek bed at both banks with surface elevations ranging from 720 to 721 between our borings. Elevation was assigned based on GPS coordinates provided by the client and Google Earth. We strongly recommend that your project surveyor tie these elevations to National Geodetic Vertical Datum.

To evaluate the subsurface soil profile for the client requested to drill two (2) soil borings to a depth of 40 feet BEG.

Based upon our findings in this subsurface investigation, we believe that there are no major limiting geotechnical concerns present in the profile for the new bridge construction at B-1, however, buried topsoil was encountered up to 6.0 feet BEG at B-2. Careful evaluation of the soils at the bottom of the open trench will be required during the construction.

SCOPE OF SERVICES

The purpose of this report is to describe the soil and groundwater conditions encountered in our geotechnical exploration, review and evaluate these conditions with respect to the proposed project and present our recommendations for feasible methods for subgrade support and earthwork design and construction. Our scope of services for this project, as outlined in our proposal, is limited to the following elements.

1. Exploration of the subsurface soil by drilling and sampling two (2) soil borings extending to a depth of 40.0 feet BEG.
2. Laboratory testing of selected samples for index classification and strength purposes and visual/manual classification of all recovered samples.
3. Development of Geotechnical recommendations, and preparation of this report presenting our findings, evaluations, and recommendations.

FIELD EXPLORATION PROCEDURES

A total of two (2) soil borings extending to a depth of 40.0 feet BEG. The drilled soil boring locations are shown on the enclosed Plate 2 (Boring Location Diagram). The client specified the number, depth, and the locations of the borings.

The borings were drilled with a track mounted Geoprobe, using hollow stem augers to advance the borehole. The soil sampling was performed in accordance with the split-barrel procedure (ASTM: D 1586) with an automatic hammer, and in-situ undisturbed samples were retrieved using a split spoon sampler. The crew prepared field logs noting the drilling and sampling methods along with Standard Penetration Test values (N-values, "blows per foot"), observed groundwater levels, and preliminary soil classifications. Representative samples of the recovered soils were placed in sealed jars to reduce moisture loss before being submitted to our laboratory for examination, testing, and final classification by a Geotechnical Engineer.

If present, groundwater levels in the boreholes were measured during and after drilling. The levels of any encountered water are noted on the respective logs. The observed groundwater levels are discussed under the "Groundwater Conditions" section of this report. The drill crew backfilled the boreholes with soil cuttings after completing the groundwater measurements.

LABORATORY TESTING AND CLASSIFICATION

A Geotechnical Engineer initiated the laboratory classification program by examining each sample to determine the major and minor components, while also noting the color, degree of saturation, and lenses or seams found in the samples. The Engineer directed that selected samples be tested for moisture content and unconfined compressive strength (by hand penetrometer). The test results are shown on the respective logs in the Appendix.

The Geotechnical Engineer visually/manually classified the soils on the basis of texture and plasticity in accordance with the Unified Soil Classification System (USCS). The capital letters in parentheses following the written soil descriptions on the boring logs are estimated group symbols based on this system. A chart describing the properties of the groups under this system is also included in the Appendix. After the classification, the Geotechnical Engineer grouped the soils by type into the strata shown on the boring logs. The stratification lines shown are approximate, *in situ*, as the transition between soil types may be abrupt or gradual in both the horizontal and vertical directions.

Soil samples will be retained for ninety (90) days after the date of this report. Please notify us if there is a desire to have the samples retained beyond this period; otherwise, the samples will be discarded.

SITE CONDITIONS

Topography/Surface Features

At the time of our initial site visit, the area next to the existing bridge over the Winfield Creek which is proposed for walking bridge, was covered with grass, heavy brush and mature trees. We understand that the Village of Wheaton is planning to build a more traditional walking bridge structure for the ease and safety of the general public crossing the creek on foot. The topography of the site was observed to be relatively flat on both sides but sloping towards the creek bed at both banks with surface elevations ranging from 720 to 721 between our borings. Elevation was assigned based on GPS coordinates provided by the client and Google Earth. We strongly recommend that your project surveyor tie these elevations to National Geodetic Vertical Datum.

Soil Conditions

The soils encountered are shown on the borehole log in the Appendix of this report. The soil characteristics have been established only at the specific boring locations and under the environmental conditions at the time of our field exploration. Variations in the soil stratigraphy, compressive strength of the soil, and moisture content were encountered; and additional variations probably exist between and around the borings. The nature and extent of these variations would not become evident until exposed by construction excavation.

In general, underlying the surficial silty clay topsoil and fill soils, the site is predominately formed of stiff to very stiff silty and sandy clay, loose to dense sand and gravel. The soil profile described below is a generalized description of the conditions encountered at the boring location. The borehole log should be referred to for more specific information.

At Boring B-1, NST crew collected one (1) grab sample between 3.5 to 5.0 feet depth BEG and tested for pH values by a NELAP certified laboratory. Test results show a pH value of 8.1mg/Kg for the grab sample.

Similarly, at Boring B-2 NST crew collected one (1) grab sample between 1.0 to 2.5 feet depth BEG and tested for pH values by a NELAP certified laboratory. Test results show a pH value of 8.1mg/Kg for the grab sample.

In boring B-1, approximately 6 inches of topsoil (TS) were noted at the surface followed by hard, dark brown silty clay (CL) at an approximate depth of 3.5 feet BEG. Underlying the dark brown silty clay (CL), very stiff to hard, brown silty clay (CL) was encountered to an approximate depth of 8.5 feet BEG followed by hard, brownish gray silty clay (CL) to an approximate depth of 11.0 feet BEG. Underlying the brownish gray silty clay (CL), hard to very stiff, gray silty clay (CL) to an approximate depth of 16.0 BEG followed by extremely dense, gray gravel (GW) seam to an approximate depth of 18.5 feet BEG. Underlying the gray gravel (GW) seam, very stiff to stiff, gray silty clay (CL) was encountered to an approximate depth of 28.5 feet BEG followed by very stiff, wet, gray sandy clay (SC) to an approximate depth of 31.0 feet BEG. Underlying the gray

sandy clay (SC), wet, dense, brown sandy gravel (SP-GM) to an approximate depth of 38.5 feet BEG followed by medium dense, grayish brown sandy gravel (SP-GM) to the termination depth of 40.0 feet BEG. Free groundwater was encountered at 28.5 feet BEG during drilling and at 19.0 feet BEG after drilling.

In boring B-2, approximately 12 inches of topsoil fill (TS FILL) were noted at the surface followed by hard, dark brown silty clay fill (FILL) at an approximate depth of 3.5 feet BEG. Underlying the dark brown silty clay fill (FILL), very stiff dark brown, buried silty clay topsoil (TS) was encountered to an approximate depth of 6.0 feet BEG followed by very stiff, brown and light gray silty clay (CL) to an approximate depth of 8.5 feet BEG. Underlying the brown and light gray silty clay (CL), hard to stiff, gray silty clay (CL) to an approximate depth of 26.0 BEG followed by medium dense, brownish gray sandy gravel (SP-GM) seam to an approximate depth of 28.5 feet BEG. Underlying the brownish gray sandy gravel (SP-GM) seam, very stiff, gray silty clay (CL) was encountered to the termination depth of 40.0 feet BEG. Free groundwater was encountered at 26.5 feet BEG during drilling and at 39.0 feet BEG after drilling.

The stiff to hard consistency of silty clay was exhibited by calibrated pocket penetrometer resistance (PPR) values of 1.5 ton per square foot (tsf) to 4.5 tsf. The Natural moisture content in silty clay was tested to range from 12.8 to 37.7 percent.

Groundwater Conditions

Groundwater level observations were made during and upon completion of drilling. Free groundwater was encountered at 28.5 feet BEG and 26.5 BEG respectively at Borings B-1 & B2 during drilling. Similarly, free groundwater was encountered at 19.0 feet BEG and 39.0 BEG respectively at Borings B1 & B2 after drilling.

It should be noted that groundwater levels are subject to seasonal and long-term variations in response to climatic conditions and man-made influences. Groundwater levels particularly in less permeable cohesive soils (clay) like those found at the site occasionally, may not have had adequate time to stabilize prior to backfilling the boreholes. The hydrostatic groundwater level and any perched water levels will vary in elevation seasonally and annually depending on local amounts of precipitation, evaporation, surface-runoff, infiltration, and land use. If detailed information about the groundwater levels is required, we recommend installing piezometers or monitoring wells to permit long-term observation of the groundwater levels and the fluctuations in these levels.

Brown and gray coloration is typically an indication of a semi-permanent groundwater table. The brown and gray coloration of clay soils is indicative of oxidation whereas the gray coloration is indicative of a lack of oxidation which tends to occur below the lowest level of groundwater.

REVIEW AND RECOMMENDATIONS

Discussion

Based upon our analysis of the soil conditions, limited laboratory analysis and the available project information, the following recommendations were developed. If the project characteristics are changed from those assumed herein, our recommendations should be reviewed to see whether any modifications are needed. Any areas found to be unsuitable within foundation excavation should be undercut further and replaced with newly approved compacted granular fill material. This section provides NST's geotechnical analysis and recommendations for the design of the proposed bridge, abutments and wall based on the results of the field exploration, and laboratory testing.

Site Preparation

Due to the elevation difference within the proposed bridge foundation area, cut or fill may have to be accomplished in site grading. Prior to the site grading all existing pavement and existing retaining wing walls (if any) should be removed and debris should be properly disposed of outside the construction area. Existing above and underground utilities, if encountered/located within the proposed construction areas, if affected by construction activities, should be relocated prior to excavation. Debris generated from the demolition of underground utilizes, including abandoned pipes, structures, should be removed from the site as construction proceeds.

The exposed, naturally occurring subgrade soil should be observed and tested by a Geotechnical Engineer or an experienced Materials Technician from **NASHnal Soil Testing, LLC** office to identify the unsuitable soils. The subgrade soil should be carefully observed, and any unsuitable or unstable materials should be removed from the pavement subgrade areas. If perched water is encountered or if rain or snowfall occurs, dewatering may be required in these areas when exposed or if subjected to any other form of water infiltration that would saturate the area.

To backfill the over-excavated areas if any under the foundation, we recommend using imported granular material meeting the gradation requirements of IDOT CA-6. Clayey soils can also be used as backfill, however, it is difficult to compact clayey soils in the narrow trenches in order to achieve the project specifications.

Granular fill meeting the CA-6 gradation specifications should be placed in 8 to 10-inch loose lifts and compacted to at least 95% of the maximum Modified Proctor dry density (ASTM: D 1557). If used, clayey materials should be placed in 6 to 8-inch loose lifts and compacted to at least 95% of the maximum Modified Proctor dry density (ASTM: D 1557) or 98% of the maximum Standard Proctor dry density (ASTM: D 698). Please refer to the notes in the report Appendix concerning placement of compacted fill soils.

Foundation Support

NST evaluated shallow (Slab foundation) and Deep (Drilled shaft/caisson) foundation system for the proposed bridge. Based on the subsurface conditions encountered and the preliminary design information provided by the structural engineer, The proposed pre-cast bridge structure can be supported by either foundation system. If driven pile foundations are considered, we recommend performing additional drilling to determine the depth of bedrock.

A Slab foundation for abutment:

The footings for the proposed abutment can be supported at a depth of about 3.5 to 4 feet below the existing grade. As revealed by the soil borings, the existing soils at the proposed footing subgrade will mostly be comprised of very stiff to hard lean clay at Boring B1 and buried topsoil (TS) at Boring B2. When any unsuitable fill material is encountered within the proposed abutment's footprint, an appropriate oversize zone will be required to be removed. Void created in doing so should be backfilled with compacted granular fill. Any existing utilities or drain tiles, if encountered should also be removed and trenches should be backfilled with compacted granular fill.

Care should be exercised so as not to disturb the bearing soils encountered at the bottom of excavation. The exposed foundation subgrade should be carefully observed by our representative to verify that the footings will be placed on suitable bearing materials. Representative hand auger borings should be performed in the excavations to verify that the materials at the foundation subgrade resemble those described on the Boring Logs. Any unsuitable, mixed, unstable, or low bearing soils should be completely removed from the footing areas. The required excavation to remove the low bearing or unstable soils should be carried out covering a zone within a 1 horizontal to 1 vertical plane extended downward and outward from the outer limits of the proposed footings. Over excavated areas should be backfilled with compacted load-bearing fill as mentioned previously.

In our opinion, the proposed Abutments may be supported on spread footings after the recommended site preparation and foundation bearing materials observation has been completed. For frost protection, footings for the structure should bear at least 8.5 feet below exterior ground surface. Provided that all the unsuitable/unstable soils are removed from the foundation areas or soils have been upgraded and foundations are placed on properly compacted load bearing fill placed to remove the unstable materials, The shallow bridge footings can be proportioned for a maximum net allowable bearing pressure of 3,000 pounds per square foot (psf). This refers to the pressure transmitted to the soil in excess of the pressure from the adjacent depth of overburden. Due to the presence of fine medium sand below the clay layer and shallow water table, we recommend to lowering the water table about 6-8 feet in the area of construction, which will reduce the post construction settlement potential for the bridge abutments.

We recommend that abutment footings should have a minimum width of 48 inches, regardless of the contact pressure, to preclude shear distortion. The recommended bearing pressure would

provide a factor of safety of at least 3 with respect to the bearing capacity of the bearing strata. We estimate that the maximum building settlement would be about one inch, with differential settlement about 3/4 of this amount, if the bearing stratum is not wet, frozen, or disturbed at the time of construction. As an alternative to the compacted granular soil backfill, the undercuts can also be backfilled using lean (low strength) concrete and would not require lateral over-sizing.

For standard abutment foundation system, we recommend that the backfill around new foundations and in utility trenches (if any) be granular material, for relative ease of compaction in confined spaces. The fill should be placed in loose lifts about 4 to 6 inches thick and uniformly compacted with manually operated equipment to at least 95% of the maximum Modified Proctor dry density (ASTM D1557).

B Drilled Shaft (Caisson) foundations for abutment:

The drilled shaft (caisson) construction should be completed in accordance with IDOT Standard Specification for Road and Bridge Construction, drilled shaft Section 516. The temporary casing construction method should be applied where sandy, lean or granular material is present within the proposed shaft depth. The temporary casing may be required to prevent caving or excessive deformation of the hole, especially in the areas where silts & poorly graded sands are encountered. Drilled shaft construction with the use of a temporary casing should be completed in accordance with article 516.06 (c) in the IDOT Standard Specification for Road and Bridge Construction. A permanent casing covering the entire shaft length is recommended for both foundations.

It is recommended that the concrete be ready on site as the caisson excavation is completed, so that the concrete can be placed immediately after completing the excavation. This diminishes the potential of water buildup in the bottom of the shaft if encountered. Bottom cleanliness of the drilled shaft excavation should be observed from the ground surface with the use of flood light or down-hole camera. Workers should not enter the shaft to manually clean the base of the shaft due to safety reasons.

The ability of the shaft to resist lateral loads is dependent on the size of the shaft diameter and the passive pressures that develop in the soils along the shaft. Lateral loads on the drilled shafts should be analyzed for the maximum moments and lateral deflections. Software such as L-Pile and COM624 are normally used to determine the required shaft depth to resist the lateral loads, and the actual maximum moment and the anticipated shaft deflection. If the shaft deflection is excessive or if the embedment is inadequate to provide support, the shaft embedment could be increased to help address these issues. The shaft diameter should be increased if the deflection or the maximum moment is higher than the shaft designed resistance. Bellied shafts can be designed for a net allowable bearing capacity of 4000 psf when placed at a depth of approximately 8.5 to 10 ft depth below existing grade on top of the Hard gray silty clay layer. Alternatively, if deeper caissons are required for structural reasons a net allowable bearing capacity of 4000 psf when placed at a depth of approximately 30 ft depth below existing grade on top of the Hard gray silty clay layer.

CONSTRUCTION CONSIDERATIONS

Groundwater

Based on the conditions found in the borings, groundwater is expected during the excavation for footings or during the soil improvement process due to the variation in water table present within the creek. Any water, which enters excavations from perched groundwater seepage, surface run-off, or direct precipitation, must be promptly pumped out. Water must not be allowed to pond on the subgrade soils since it could soften and disturb them. The contractor should be prepared to handle both surface and groundwater encountered during the construction. The contractor shall plan an appropriate dewatering scheme so that all construction activities are performed in dry and stable conditions, especially to avoid potential post construction settlement in sandy materials with shallow groundwater.

Structural fill and concrete should not be placed in standing water or on wet or disturbed soils. Placing fill, asphalt, or concrete into standing water or over disturbed soil can trap softened soil under the structure and lead to excessive post-construction settlement/cracking & rutting, even if the softened zone is only a few inches thick.

Equipment Selection/Soil Disturbance

The soil types at this site, particularly the silty clays when they are saturated or during freeze/thaw conditions, could be disturbed by construction equipment. It is the contractor's responsibility to choose equipment and work procedures, which will not unduly disturb the subgrade soils in the construction and landscaped areas. The contractor should also route construction traffic away from areas of planned pavement and slabs, to minimize soil disturbance.

If the equipment that is chosen causes rutting or pumping of the soil, it is the contractor's responsibility to switch to other types of equipment. The responsibility to properly select construction equipment to avoid disturbing soil on the site lies solely with the contractor. A note to this effect should be included in the project specifications.

Winter Construction

If the construction of this project begins or extends into the winter, the contractors must take special precautions. Only unfrozen fill and backfill should be used, and contractors may charge extra for importing unfrozen soil or keeping stockpiles of backfill from freezing. Clay soil will be especially difficult to work with under cold wet and/or freezing conditions. Placement of fill and/or asphalt/concrete must not be permitted on frozen soil, and the bearing soils or subgrade should not be allowed to freeze after the concrete is placed. All footing excavations should be protected from freezing conditions and maintained free of ponded water before asphalt/concrete placement. The footings should be cast as soon as possible after excavation is prepared and backfilled as soon as possible after the concrete has attained its strength.

Construction Safety

All excavations must comply with the requirements of OSHA 29 CFR, Part 1926, Subpart P "Excavations and Trenches." This document states that excavation safety is solely the responsibility of the contractor; the determination of SAFE slopes for excavation and trenches is to be made by the contractor's "competent person." Reference to this OSHA requirement should be included in the job specifications. The temporary excavation slopes greater than 5 feet in depth should conform to OSHA regulations. In general, such slopes should not be steeper than 1.5 horizontal to 1 vertical (OSHA Soil Type C), unless shoring is used.

The responsibility to provide safe working conditions on this site for earthwork, construction, or any associated operations, is not borne in any manner by NASHnai Soil Testing, LLC.

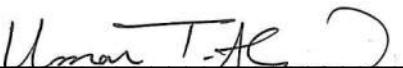
Field Observation and Testing

Proper observation and testing during the construction phase of this project is an integral part of our recommendations. On-site observation during site preparation, fill placement, compaction, and footing construction, should be done by qualified personnel from **OUR** office. Exposed soils in excavations for backfill should be tested by means of hand auguring, and with a Dynamic Cone Penetrometer (DCP) in sandy soils or a Static Cone Penetrometer (SCP) in clayey soils.

Proposed fill materials should be submitted to our lab for Proctor compaction tests, and tests to check compliance with our recommendations and project specifications. A representative number of field density tests should be taken in compacted fill to aid in judging its suitability. The building materials should be tested in accordance with the project specifications. We would be pleased to provide the testing services for this project.

GENERAL QUALIFICATIONS

This report has been prepared based on the soil and groundwater conditions found in our borings and on the design data that you have related to us. This report is intended solely for this project at the specific locations identified in the Introduction and Scope of Services. If there are any changes in size, scope, elevation, structural loads, location, use or nature of the structure from those discussed in the introduction of this report, or if our understanding of the project is incorrect or incomplete, we should be given the opportunity to review or modify our recommendations. If changes are made in the design and we are not given the opportunity to review these changes relative to our recommendations and to respond in writing, or we are not provided the opportunity to confirm the soil conditions are as expressed in this report during the construction of this project, our recommendations will not be considered valid. No specific efforts were performed to determine the thickness of the topsoil layer, the topsoil thickness given in our logs is an estimate. If the true thickness of topsoil is required, we recommend that numerous detailed hand augur probes be performed throughout this parcel.


Pedestrian Bridge Over Winfield Creek
South of Roosevelt Road, Wheaton, IL
Project Number 2024-1301-04G
June 16, 2024

For this geotechnical exploration, we drilled two (2) soil boring in the specified areas. Variations in the subsurface conditions may be found during construction, and it is probable that additional variations exist on the site that cannot be determined from our boring or the site reconnaissance. These variations, which could include greater or shallower depths of unsuitable soils than found at our borings, would not become apparent until the excavation is started. No warranty, express or implied, is presented in this report with respect to the soil and groundwater conditions on this site.

STANDARD OF CARE

The recommendations and opinions contained in this report are based on our interpretation of the subsurface conditions and represent our professional judgment. These judgments were determined in accordance with currently accepted engineering practices at this time and location, by professionals working under similar time and budget constraints. No other warranty is implied or intended.

Prepared by:

Umar T. Ahmad, PE

Registered Professional Engineer, Illinois
Registration # 062-055148

Expires 11/30/2025

www.nstengr.com

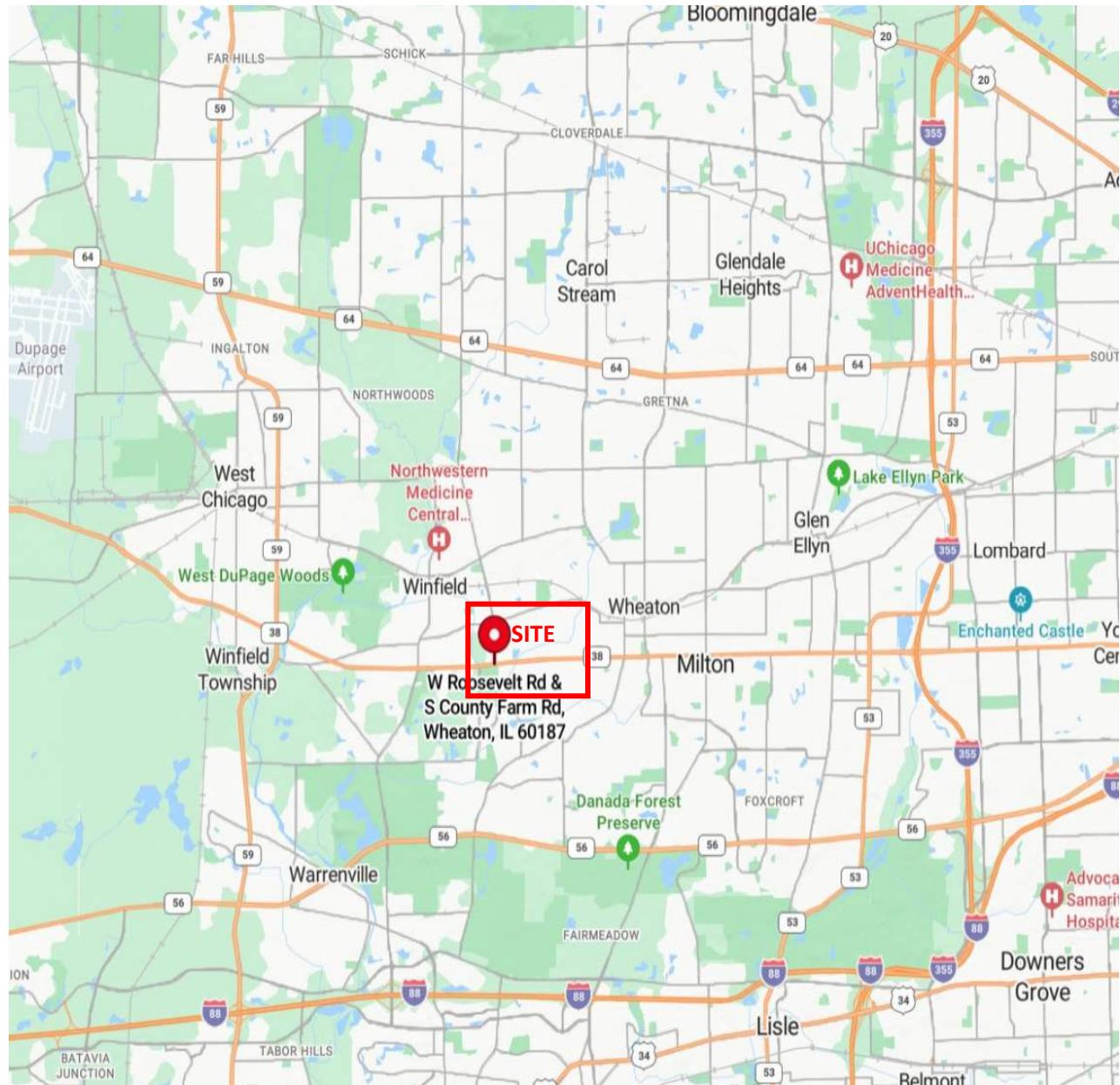
Pedestrian Bridge Over Winfield Creek
South of Roosevelt Road, Wheaton, IL
Project Number 2024-1301-04G
June 16, 2024

APPENDIX

SITE LOCATION DIAGRAM (Plate No. 1)

BORING LOCATION DIAGRAMS (Plate No. 2)

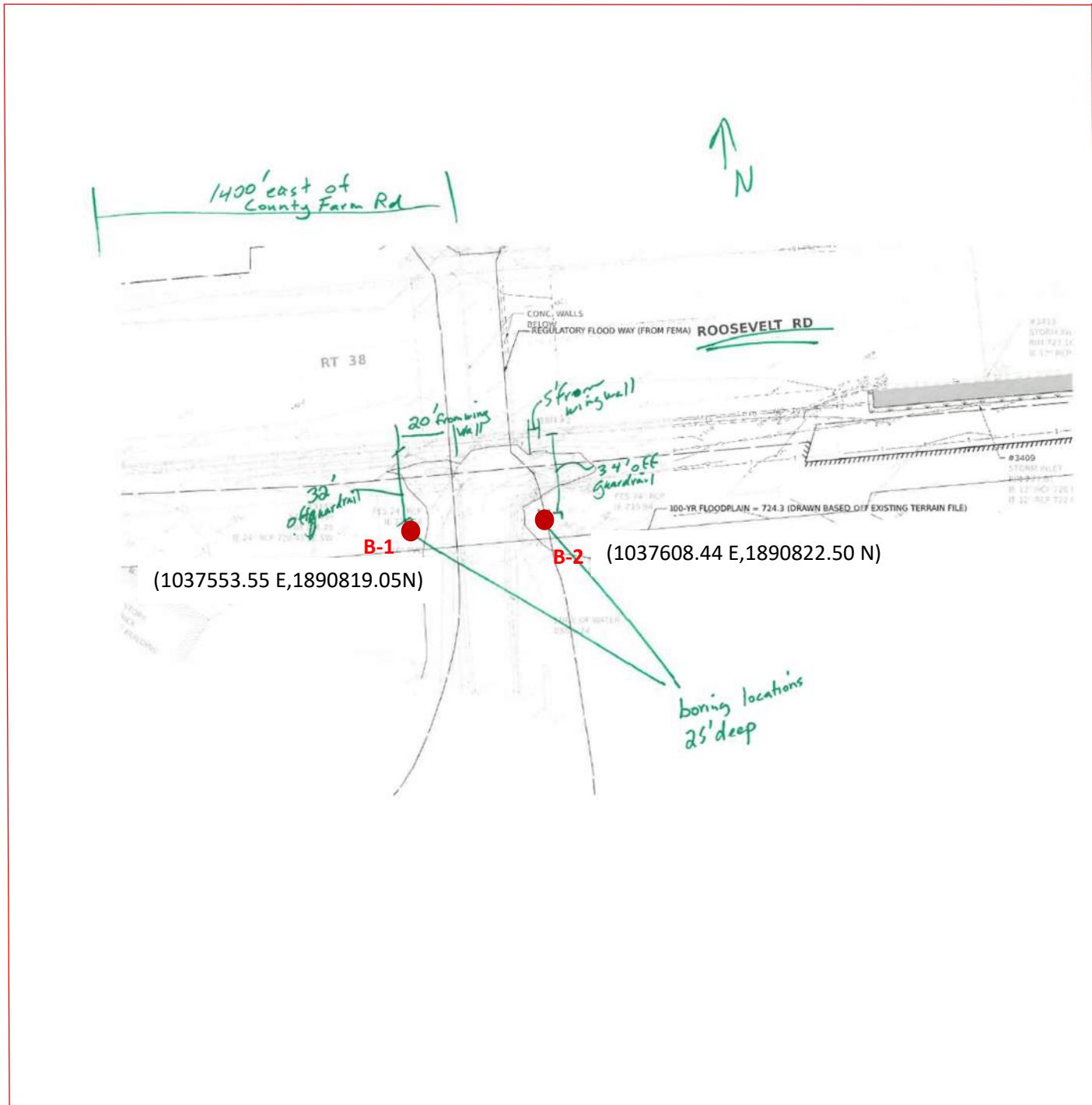
BORING LOGS (Plate No. 3-6)


UNCONFINED COMPRESSION TEST DATA

KEY TO TEST DATA

CLASSIFICATION OF SOILS

NOTES ON PLACEMENT OF COMPACTED FILL


pH RESULTS BY NELAP LABORATORY

2024-1301-04G

Plate No. 1

Pedestrian Bridge
County Farm Road & Roosevelt Road Intersection, Wheaton, IL
Site Location Diagram

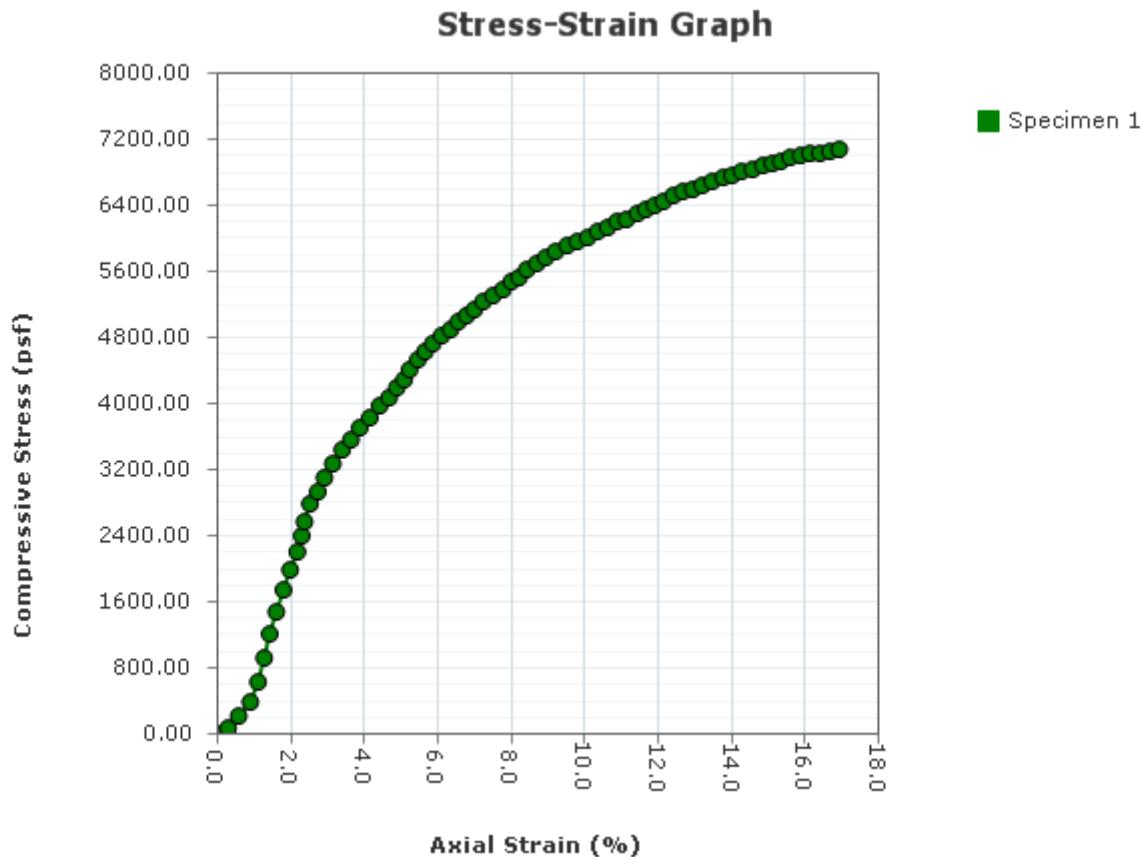

2024-1301-04G

Plate No. 2

Pedestrian Bridge
County Farm Road & Roosevelt Road Intersection, Wheaton, IL
Boring Location Diagram

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 9

Sample Depth: 21.0-22.5 ft

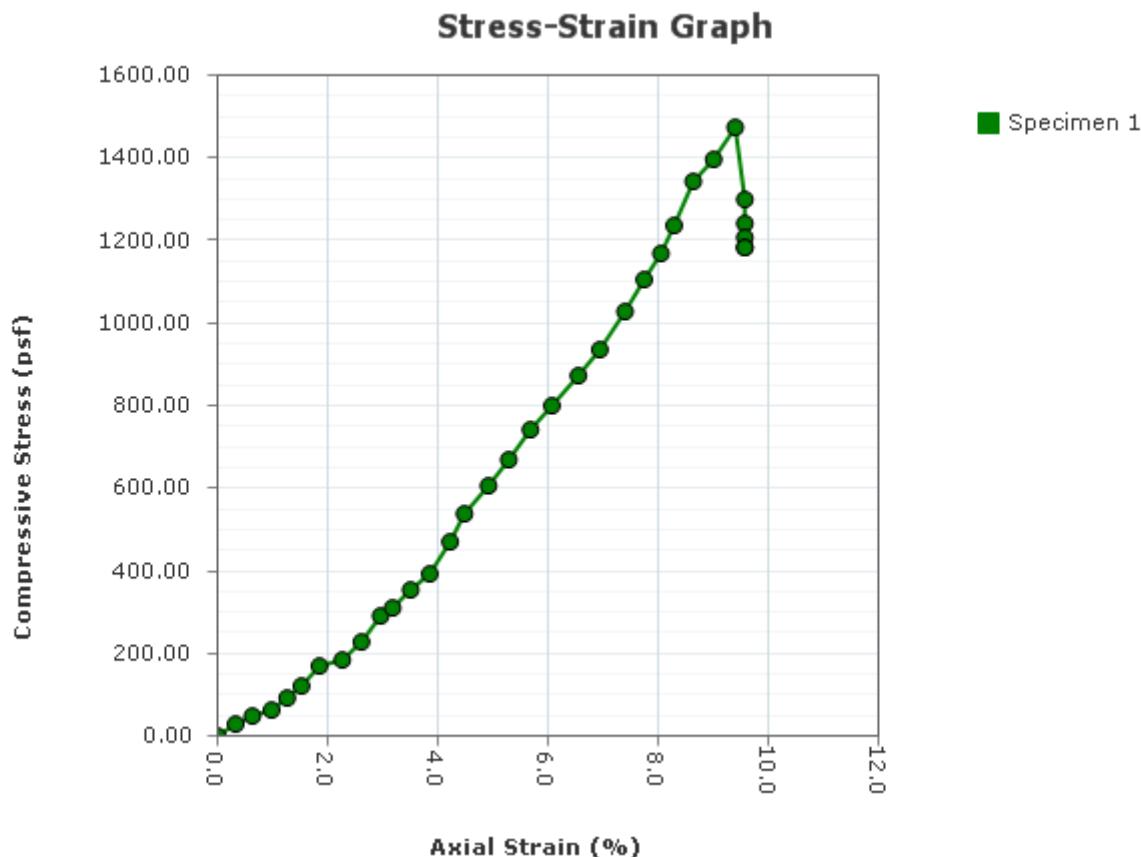
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 11

Sample Depth: 26.0-27.5 ft

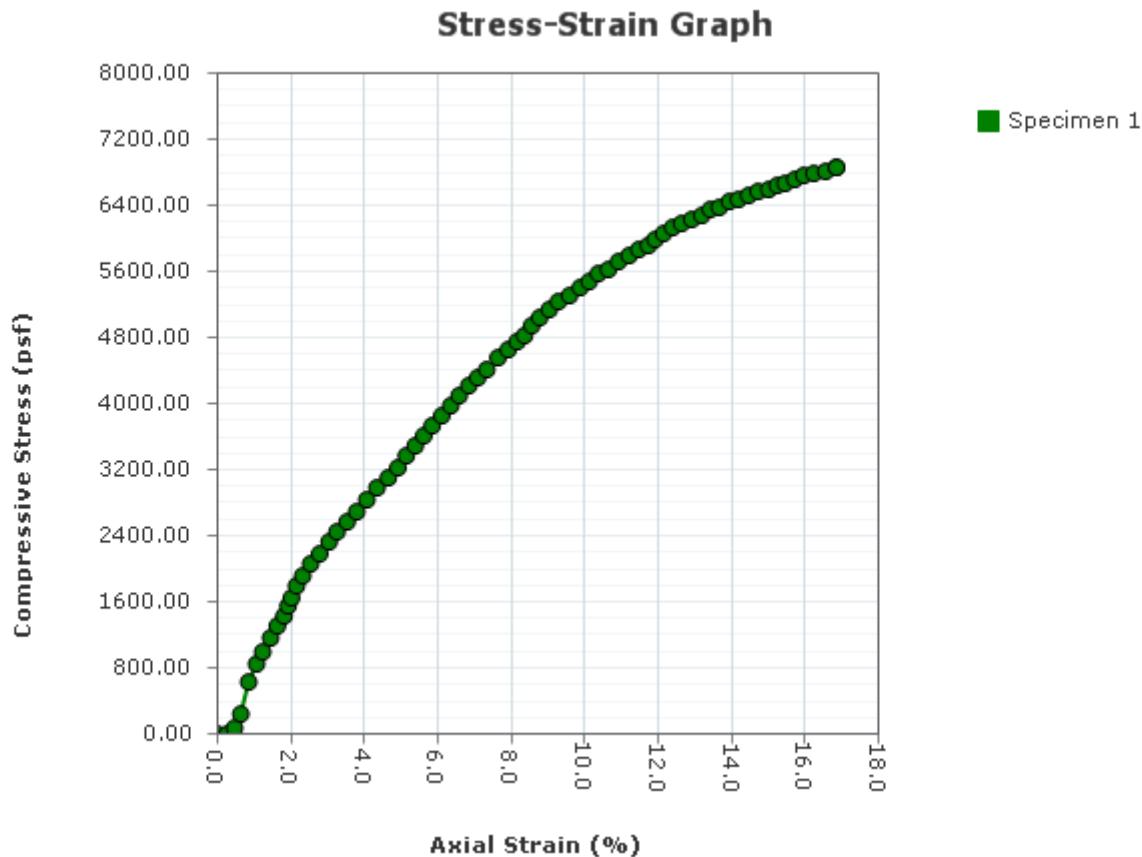
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 13

Sample Depth: 31.0-32.5 ft

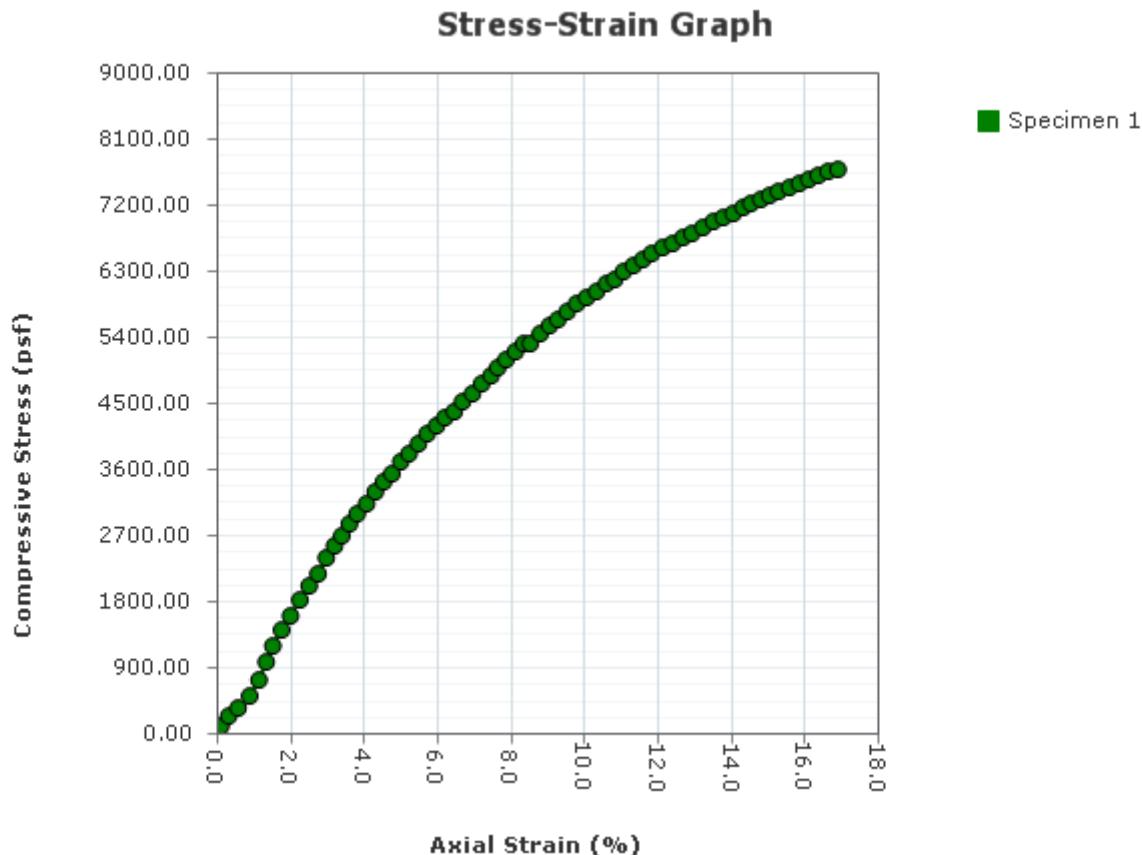
Boring Number: B-1

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/10/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number:

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 7

Sample Depth: 16.0-17.5 ft

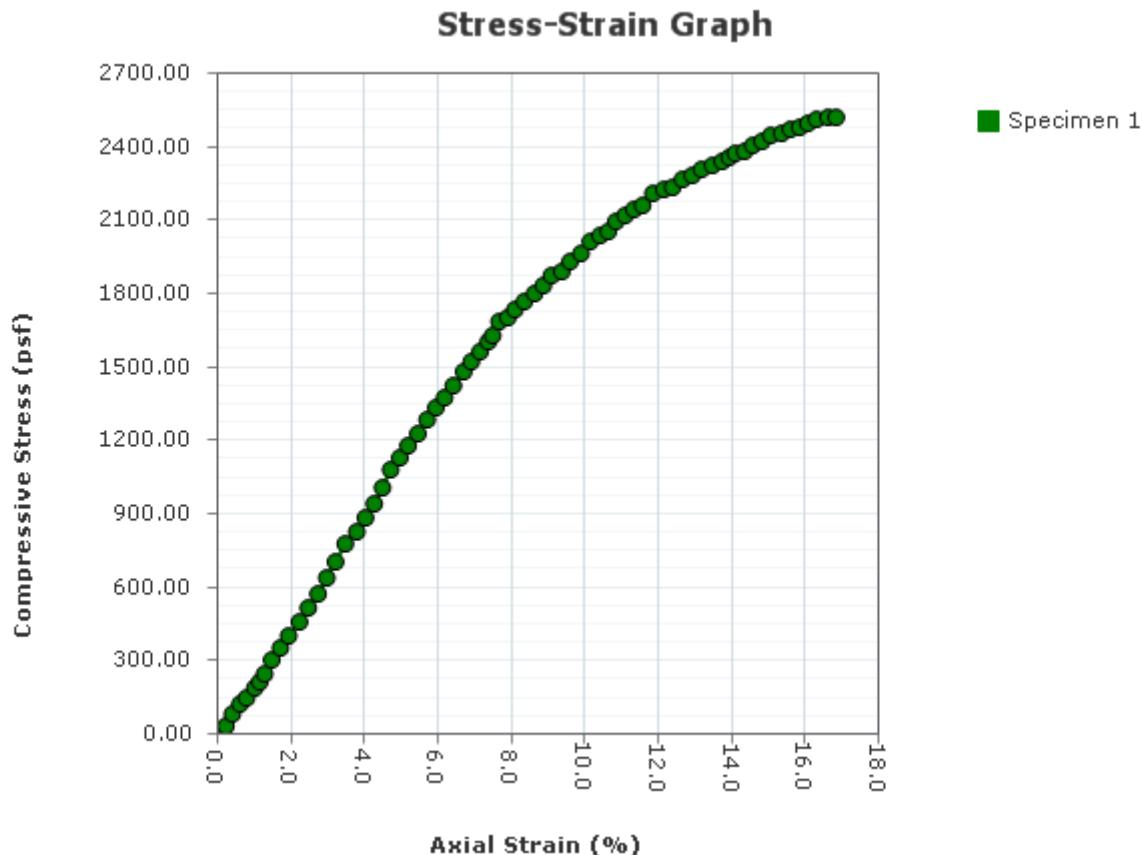
Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number:


Test Date: 6/10/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 7

Sample Depth: 21.0-22.5 ft

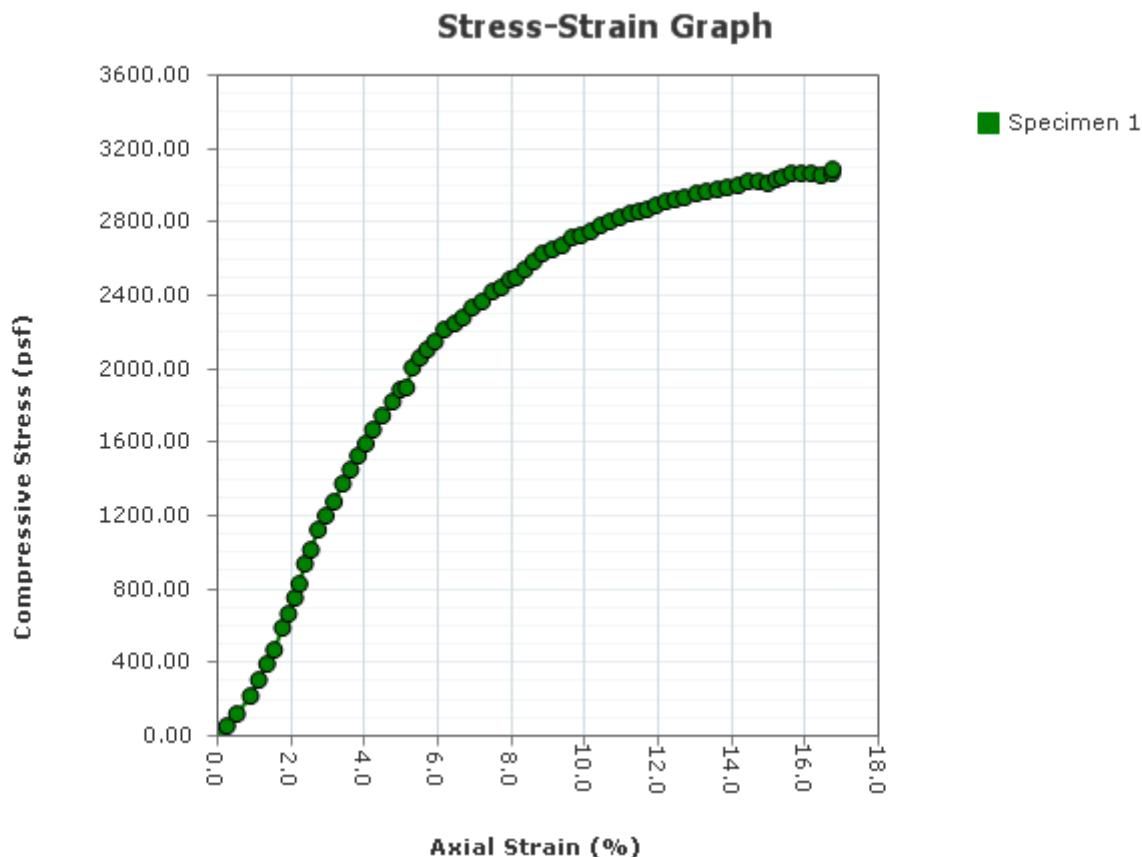
Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G


Test Date: 6/20/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

Unconfined Compression Test

Unconfined

Project: 240268 Roosevelt Pedestrian Bridge

Project Number: 2024-1301-04G

Received Date: 5/31/2024

Sampling Date: 5/31/2024

Sample Number: 15

Sample Depth: 36.0-37.5 ft

Boring Number: B-2

Location: 2082 Roosevelt Rd. Wheaton IL

Client Name: V3 Companies

Remarks:

Project Name: 240268 Roosevelt Pedestrian Bridge Project Number: 2024-1301-04G

Test Date: 6/20/2024

Checked By: _____ Date: _____

Report Created: 6/20/2024

KEY TO TEST DATA

DRILLING & SAMPLING SYMBOLS:

SL	=	SS with Liner	ST	=	3" Shelby Tube
SS	=	Split Spoon — 1% I.D., 2" O.D., unless otherwise noted	HS	=	Hollow Stem Auger
ST	=	Shelby Tube — 2" O.D., unless otherwise noted	WS	=	Wash Sample
PA	=	Power Auger	FT	=	Fish Trail
DB	=	Diamond Bit — NX: BX: AX	RB	=	Rock Bit
AS	=	Auger Sample	BS	=	Bulk Sample
JS	=	Jar Sample	PM	=	Pressuremeter test—in situ
VS	=	Vane Shear			
Standard "N" Penetration	=	Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch OD split spoon, except where noted.			

WATER TABLE

MEASUREMENT SYMBOLS

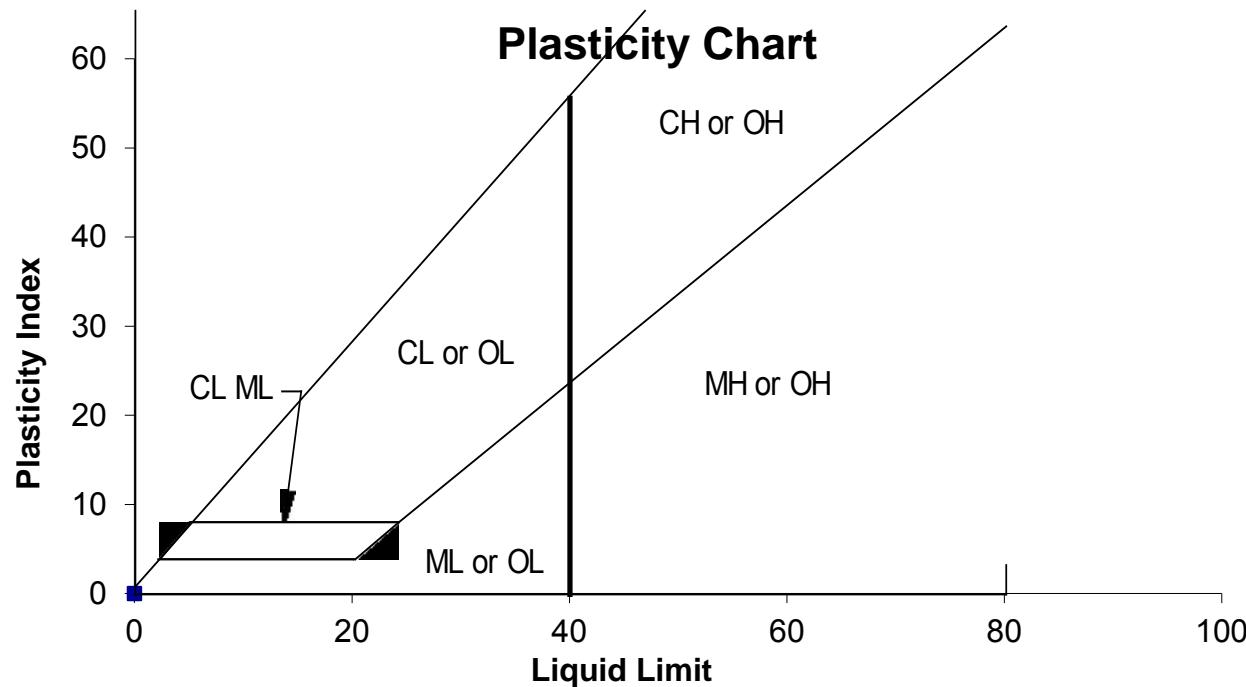
WL	=	Water Level
WCI	=	Cave In
DCI	=	Dry Cave In
WS	=	While Sampling
WD	=	While Drilling
BC	=	Before Casing Removal
ACR	=	After Casing Removal
AB	=	After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils, the accurate determination of ground water elevations is not possible even after several days observation, and additional evidence of ground water elevations must be sought.

GRADATION DESCRIPTION & TERMINOLOGY

Coarse Grained or Granular Soils have more than 50% of their dry weight retained on a #200 sieve; they are described as: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are described as: clays or clayey silts if they are cohesive, and silts if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency, and their plasticity.

<u>Major Component Of Sample</u>	<u>Size Range</u>	<u>Descriptive Term(s) (Of Components Also Present in Sample)</u>	<u>Percent of Dry Weight</u>
Boulders	Over 8 in. (200mm)	Trace	1 — 9 .
Cobbles	8 in. to 3 in. (200mm to 75mm)	Little	10 — 19
Gravel	3 in. to #4 sieve (75mm to 2mm)	Some	20 — 34
Sand	#4 to #200 sieve (2mm to .074mm)	And	35 — 50
Silt	Passing #200 sieve (0.074mm to 0.005mm)		
Clay	Smaller than 0.005mm		


CONSISTENCY OF COHESIVE SOILS

RELATIVE DENSITY OF GRANULAR SOILS

<u>Unconfined Comp. Strength, Qu, tsf</u>	<u>Consistency</u>	<u>N — Blows/ft.</u>	<u>Relative Density</u>
<0.25 —	Very Soft	0 — 3	Very Loose
0.25 — 0.49	Soft	4 — 9	Loose
0.50 — 0.99	Medium (Firm)	10 — 29	Medium Dense
1.00 — 1.99	Stiff	30 — 49	Dense
2.00 — 3.99	Very Stiff	50 — 80	Very Dense
4.00 — 8.00	Hard	80 +	Extremely Dense
>8.00	Very Hard		

UNIFIED SOIL CLASSIFICATION CHART

CRITERIA FOR ASSIGNING GROUP NAMES & GROUP SYMBOLS USING LABORATORY TEST RESULTS				Soil Classification	
				Group Symbol	Group Name
COURSE-GRAINED SOILS More than 50% retained on #200 Sieve	GRAVELS More than 50% of course fractions are retained on #4 sieve	CLEAN GRAVELS Less than 5% fines	Cu \leq 4 and 1 \leq Cc \leq 3	GW	Well Graded Gravel
			Cu $<$ 4 and/or 1 $>$ Cc $>$ 3	GP	Poorly Graded Gravel
		GRAVELS With more than 12% fines	Fines classify as ML or MH	GM	Silty Gravel
			Fines classify as CL or CH	GC	Clayey Gravel
	SANDS 50% or more of course fractions passes #4 sieve	CLEAN SANDS Less than 5% fines	Cu \leq 6 and 1 \leq Cc \leq 3	SW	Well Graded Sand
			Cu $<$ 6 and/or 1 $>$ Cc $>$ 3	SP	Poorly Graded Sand
		SANDS With more than 12% fines	Fines classify as ML or MH	SM	Silty Sand
			Fines classify as CL or CH	SC	Clayey Sand
FINE-GRAINED SOILS 50% or More Passed the #200 Sieve	SILTS & CLAYS Liquid Limit Lower than 50%	Inorganic	PI $>$ 7 and plots on or above "A" line	CL	Non to Low Plasticity Clay
			PI $<$ 4 and plots below "A" line	ML	Silt
		Organic	$\frac{\text{Liquid Limit (Oven Dried)}}{\text{Liquid Limit (Not Dried)}} < 0.75$	OL	Organic Clay or Silt
			PI plots on or above "A" line	CH	Highly Plastic Clay
	SILTS & CLAYS Liquid Limit 50% or Higher	Inorganic	PI plots below "A" line	MH	Elastic Silt
			$\frac{\text{Liquid Limit (Oven Dried)}}{\text{Liquid Limit (Not Dried)}} < 0.75$	OH	Organic Clay or Silt
			Primarily organic material, darker and with organic odor	PT	Peat

NOTES ON PLACEMENT OF COMPACTED FILL SOIL

GENERAL

The placement of compacted fill for support of foundations, floor slabs, pavements, or earth structures should be carried out by an experienced excavator with the proper equipment. The excavator must be prepared to adapt his procedures, equipment, and materials to the type of project, to weather conditions, and the structural requirements of the architect and engineer. Methods and materials used in summer may not be applicable in winter; fill used in dry excavations may not be suitable in wet excavations or during periods of precipitation; proposed fill soil may require wetting or drying for proper placement and compaction. Conditions may also vary during the course of a project or in different areas of the site. These needs should be addressed in the project drawings and specifications.

EXCAVATION/BACKFILL BELOW THE WATER TABLE

It is common to have to excavate and replace unsuitable soils below the water table for site correction. As a general rule of prudent construction technique, we recommend that excavation/backfill below the water table not be permitted, unless the excavation is dewatered. Numerous problems can develop when this procedure is attempted without dewatering.

- Inability of the equipment operators and soil technicians to observe that all unsuitable soil/materials have been removed from the base of the excavation.
- Inability to observe and measure that proper lateral oversizing is provided.
- Inability to prevent or correct sloughing of excavation sidewalls, which can result in unsuitable soils trapped within the select backfill.
- Inability of the contractor to adequately and uniformly compact the backfill.
- Possibility of disturbance of the suitable soils at the base of the excavation.

The dewatering methods, normally chosen at the contractor's option, should follow prudent construction practice. Excavations in clay can often be dewatered with sump pits and pumps; this technique would not be applicable for excavation extending into permeable granular soil, especially for depths significantly below the water table. Dewatering granular soils should normally be done with well points or wells. When dewatering is needed, we strongly recommend that the procedures be discussed at pre-bid or pre-construction meetings. The architect and engineer should review the dewatering technique chosen by the contractor before construction starts; it should not be left until excavation is under way.

The selection of proper backfill materials is important when working in dewatered excavations. Even with dewatering, the base is usually wet and the contractor must be careful not to disturb the base. We recommend that the first lifts of backfill be a clean medium to coarse grain sand with less than 5% passing the #200 sieve. The use of silty sand, clayey sand, or cohesive/semi-cohesive soils is not recommended for such situations. The excavator should be required to submit samples of the proposed material(s) he plans to use as backfill before the fill is hauled to the site, so that it can be tested for suitability.

WINTER EARTHWORK CONSTRUCTION

Winter earthwork presents its own range of problems, which must be overcome; the situation may be complicated by the need for dewatering discussed above.

During freezing conditions, the fill used must not be frozen when delivered to the site. It also must not be allowed to freeze during or after compaction. Since the ability to work the soil while keeping it from freezing depends in part on the soil type, the specifications should require the contractor to submit a sample of his proposed fill before construction starts, for laboratory testing. If the soil engineer and structural engineer determine that it is not suitable, it should be rejected. In general, silty sand, clayey sand, and cohesive/semi-cohesive soils should not be used as fill under freezing conditions. All frozen soil of any type should be rejected for use as compacted fill.

It is important that compacted fill be protected from freezing after it is placed. The excavator should be required to submit a plan for protecting the soil. The plan should include details on the type and amount of material (straw, blankets, extra loose fill, topsoil, etc.) proposed for use as frost protection. The need to protect the soil from freezing is ongoing throughout construction and applies both before and after concrete is placed, until backfilling for final frost protection is completed. Foundations placed on frozen soil can experience heaving and significant settlement, rotation, or other movement as the soil thaws. Such movement can also occur if the soil is allowed to freeze after the concrete is placed and then allowed to thaw. The higher the percentage of fines (clay and silt, P-200 material) in the fill, the more critical is the need for protection from freezing.

ANALYTICAL REPORT

PREPARED FOR

Attn: Umar T Ahmad
NASHnal Soil Testing, LLC
23856 W. Andrew Road
Unit 103
Plainfield, Illinois 60585

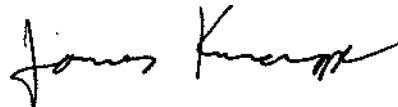
Generated 6/11/2024 2:19:56 PM

JOB DESCRIPTION

240268 Roosevelt

JOB NUMBER

500-251511-1


Eurofins Chicago

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated
6/11/2024 2:19:56 PM

Authorized for release by
Jim Knapp, Senior Project Manager
Jim.Knapp@et.eurofinsus.com
(630)758-0262

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	10
QC Association	11
QC Sample Results	12
Chronicle	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	16

Case Narrative

Client: NASHnal Soil Testing, LLC
Project: 240268 Roosevelt

Job ID: 500-251511-1

Job ID: 500-251511-1

Eurofins Chicago

Job Narrative 500-251511-1

Receipt

The samples were received on 06/03/24 15:27. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 26.9° C.

Receipt Exceptions

The samples were received at the laboratory outside the required temperature criteria: There was no cooling media present in the cooler.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Detection Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'

Lab Sample ID: 500-251511-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

Client Sample ID: B-2 1'-2.5'

Lab Sample ID: 500-251511-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
pH	8.1		0.2	0.2	SU	1		9045D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Method Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method	Method Description	Protocol	Laboratory
9045D	pH	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Sample Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-251511-1	B-1 3.5'-5'	Solid	05/31/24 10:00	06/03/24 15:27
500-251511-2	B-2 1'-2.5'	Solid	06/03/24 10:30	06/03/24 15:27

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/07/24 16:31	1

Client Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH (SW846 9045D)	8.1		0.2	0.2	SU			06/10/24 17:18	1

Definitions/Glossary

Client: NASHnai Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

□	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

General Chemistry

Analysis Batch: 771728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-1	B-1 3.5'-5'	Total/NA	Solid	9045D	
500-251511-1 DU	B-1 3.5'-5'	Total/NA	Solid	9045D	

Analysis Batch: 771890

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-251511-2	B-2 1'-2.5'	Total/NA	Solid	9045D	
LCS 500-771890/2	Lab Control Sample	Total/NA	Solid	9045D	
LCSD 500-771890/3	Lab Control Sample Dup	Total/NA	Solid	9045D	

QC Sample Results

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Method: 9045D - pH

Lab Sample ID: 500-251511-1 DU

Matrix: Solid

Analysis Batch: 771728

Client Sample ID: B-1 3.5'-5'

Prep Type: Total/NA

Analyte	Sample Result	Sample Qualifier	DU Result	DU Qualifier	Unit	D	RPD	RPD Limit
pH	8.1		8.3		SU		3	5

Lab Chronicle

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Client Sample ID: B-1 3.5'-5'
Date Collected: 05/31/24 10:00
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-1
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Batch Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771728	SO	EET CHI	06/07/24 16:31

Client Sample ID: B-2 1'-2.5'
Date Collected: 06/03/24 10:30
Date Received: 06/03/24 15:27

Lab Sample ID: 500-251511-2
Matrix: Solid

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Batch Analyst	Lab	Prepared or Analyzed
Total/NA	Analysis	9045D		1	771890	SO	EET CHI	06/10/24 17:18

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Accreditation/Certification Summary

Client: NASHnal Soil Testing, LLC
Project/Site: 240268 Roosevelt

Job ID: 500-251511-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Illinois	NELAP	IL00035	05-31-25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Eurofins Chicago

Client Contact		Project Manager			Site Contact		Date		COC No					
Company Name NASHNAL SOIL TESTING		Tel/Email			Lab Contact		Carrier		of _____ COCs					
Address 23856 W ANDREW RD #103		Analysis Turnaround Time							Sampler					
City/State/Zip PLAINFIELD, IL, 60585		<input type="checkbox"/> CALENDAR DAYS <input type="checkbox"/> WORKING DAYS							For Lab Use Only					
Phone 630 780 5201		TAT if different from Below							Walk in Client					
Fax		<input type="checkbox"/> 2 weeks <input type="checkbox"/> 1 week <input type="checkbox"/> 2 days <input type="checkbox"/> 1 day							Lab Sampling					
Project Name 240268 ROOSEVELT Rd									Job / SDG No					
Site									500-251511					
P O #														
Sample Identification		Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont	Filtered Sample (Y/N)	Perform MS / MSD (Y/N)	500-251511 COC		Sample Specific Notes			
B-1 3.5'-5'		5/31	10AM	G	Soil	1	N	N						
B-2 1'-2.5'		6/3	10:30AM	G	Soil	1	N	N						
<input type="checkbox"/> Return to Client <input type="checkbox"/> Disposal by Lab <input type="checkbox"/> Archive for _____ Months														
Preservation Used: 1=Ice, 2=HCl; 3=H2SO4; 4=HNO3; 5=NaOH; 6=Other														
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample														
Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)														
<input type="checkbox"/> Non Hazard <input type="checkbox"/> Flammable <input type="checkbox"/> Skin Irritant <input type="checkbox"/> Poison B <input type="checkbox"/> Unknown														
Special Instructions/QC Requirements & Comments: Run pH test only														
Custody Seals Intact		<input type="checkbox"/> Yes <input type="checkbox"/> No		Custody Seal No		27	Cooler Temp (°C) Obs'd		27.4	Corrd	26.9	Therm ID No		
Relinquished by		Adan Arroyo		Company		Nashnal	Date/Time		6-3-24 3:20 pm	Received by		Company	Date/Time	
Relinquished by				Company			Date/Time			Received by		Company	Date/Time	
Relinquished by				Company			Date/Time			Received in Laboratory by	Bruno M	Company	EETA	Date/Time

Login Sample Receipt Checklist

Client: NASHnai Soil Testing, LLC

Job Number: 500-251511-1

Login Number: 251511

List Source: Eurofins Chicago

List Number: 1

Creator: Schmidt, Kara

Question	Answer	Comment	
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True		1
The cooler's custody seal, if present, is intact.	True		2
Sample custody seals, if present, are intact.	True		3
The cooler or samples do not appear to have been compromised or tampered with.	True		4
Samples were received on ice.	False		5
Cooler Temperature is acceptable.	False		6
Cooler Temperature is recorded.	True	26.9	7
COC is present.	True		8
COC is filled out in ink and legible.	True		9
COC is filled out with all pertinent information.	True		10
Is the Field Sampler's name present on COC?	True		11
There are no discrepancies between the containers received and the COC.	True		12
Samples are received within Holding Time (excluding tests with immediate HTs)	True		13
Sample containers have legible labels.	True		14
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		